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Abstract

Low-frequency 1g21.1 distal deletion and duplication copy number variant (CNV)
carriers are predisposed to multiple neurodevelopmental disorders including
schizophrenia, autism and intellectual disability. Human carriers display a high
prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively.
The underlying brain structural diversity remains largely unknown.

We systematically called CN'Vs in 38 cohorts from the large-scale ENIGMA-CNV
collaboration and the UK biobank and identified 28 1q21.1 distal deletion and 22
duplication carriers and 37,088 non-carriers (48 % male) derived from 15 distinct MRI
scanner sites. With standardized methods, we compared subcortical and cortical brain
measures (all) and cognitive performance (UK biobank only) between carrier groups also
testing for mediation of brain structure on cognition. We identified positive dosage
effects of copy number on intracranial volume (ICV) and total cortical surface area, with
largest effects in frontal and cingulate cortices, and negative dosage effects on caudate
and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in
cognitive tasks from the UK biobank with intermediate decreases in duplication carriers
and somewhat larger in deletion carriers — the latter potentially mediated by ICV or
cortical surface area. These results shed light on pathobiological mechanisms of
neurodevelopmental disorders, by demonstrating gene dose effect on specific brain

structures and effect on cognitive function.

Introduction
Inter-individual differences in brain structure are highly heritable', but identifying the
genes that contribute to brain development is challenging. Genome-wide association

studies (GWAS) of brain anatomical structures indicate the influence of many single
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nucleotide polymorphisms (SNPs) with small effect sizes™ >, but the links to brain
function remain weak. Evidence is emerging that some rare copy number variants
(CNVs) - i.e., regions of the genome that are either deleted or duplicated - are associated
with both substantial brain size and shape differences; e.g., the 7q11.23%°,22q11.2%7,
15q11.2%"" and 16p11.2 proximal'*'* and distal CNVs'>. Many of these CNVs also have

16-1 :
8.16-18 4nd increased

wide-ranging phenotypic impact, including poorer cognitive abilities
risk of neurological or neurodevelopmental disorders. The strong impact of these CNVs

on brain structure and behavior make them valuable for studies of the molecular

mechanisms contributing to aberrant human neurodevelopment.

The 1g21.1 distal CNV has a known large effect on head circumference, as evident from
a high prevalence of micro- and macrocephaly in deletion and duplication carriers,
respectivelyl9'21. This, along with its position in a region that is rich in genes unique to
the human lineage (i.e.absent in primates)> **, makes the 1g21.1 distal CN'V particularly
interesting for the study of aberrations in human brain structure. However, its relatively
low frequency, 1 in ~3,400, (deletions) and 1 in 2,100 (duplications)® '®, has hampered

the study of its effects on brain structure.

1g21.1 distal deletion and duplication carriers are both at higher risk for several
neurodevelopmental disorders including schizophrenia®, intellectual disability (ID),

developmental delay (DD), speech problems, autism spectrum disorders (ASD), motor

19, 25-27 25,28

impairment and epilepsy™ ~, in addition to separate risk for the duplication

carriers for ADHD®, bipolar disorder and major depression®”*'. Further, general
cognitive ability (IQ) was lower in carriers in a small clinical study19 and in the UK
biobank®”. In addition, 1q21.1 distal CNVs display a positive dose response on head

33,34

circumference'®?!, height and weight and are associated with various somatic
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diseases and traits including bone and muscle deviations™ and cataract’ (deletion only),

35-38

diabetes®” (duplication only) and heart disease (both). Conversely, several studies

19,37

report carriers without any clinically evident phenotypes and considerable

heterogeneity™” *

, suggesting incomplete penetrance and variable expressivity. The
Df(h1g21) +/- mouse, deleted in the syntenic 1q21.1 distal region, displays some
phenotypes similar to human CNV carriers, including reduced head-to-tail-length and

altered dopamine transmission in response to psychostimulants, as seen in people with

schizophrenia®'.

20,42 .
> and contains several

The 1g21 region in humans is rich in low copy number repeats
recurrent CNVs with differing breakpoints®!*®. Thus, gene estimates vary, but the core
interval encompasses at least twelve protein-coding genes including several human-
specific genes such as HYDIN2*"*%, NOTCH2NLs*** and the DUF1220/Olduvain

domain containing NBPF-encoding genes43 s

— the two latter were recently shown to
have evolved as a two-gene unit*®. Particularly interesting in the context of brain
development are the recently characterized NOTCH2NL genes, absent in human’s closest

living relatives and shown to prolong cortical neurogenesis™> >.

Despite the strong effects on neurodevelopmental traits and disorders, the impact of the
1g21.1 CNVs on human brain structure is largely unknown. Here, we present the first
large-scale systematic neuroimaging study of 1q21.1 distal CNV carriers, investigating
brain structure in more than 37,000 individuals including 28 deletion and 22 duplication
carriers. We mapped the effect of the 1g21.1 distal CNV on subcortical volumes,
intracranial volume (ICV) and global and regional measures of mean cortical thickness
and surface area. We investigated variation in cognitive task performance and

supplemented with exploratory mediation analysis of the brain on cognition in the UK
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Biobank. Given prior findings'*2"*

, we explored a dose-dependent effect of copy
number on brain structures and decreased cognitive performance for both 1g21.1 distal

deletion and duplication carriers in comparison to non-carriers.

Materials and Methods

Sample description

The brain structural sample comprises a total of 39 cohorts with genotyping and MRI
imaging data — 38 from the ENIGMA-CNYV consortium in addition to a subsample of the
UK Biobank*® (project ID number #27412). Demographic characteristics for each cohort
is described in Supplementary Table 1 with a reference to participants’ collection and
data sets including individual inclusion and exclusion parameters. Extended information
on diagnosis and family information can be found in Supplementary Note 1 and age
distribution of the cohorts in Supplementary Figure 1. All participants gave written
informed consent and sites involved obtained ethical approvals. The main 1g21.1 distal
sample consisted of 28 deletion carriers, 22 duplication carriers and 37,088 non-carriers
(Table 1) from 13 different datasets and 15 scanner sites with various ascertainments
(family, clinical and population studies, case-control study for psychiatric disease)
collected up until Sep 30, 2019. Non-carriers were defined as having no CNVs known to
cause neurodevelopmental diseases (as defined in Supplementary Table 2). In the meta-
analysis, an independent Icelandic sample from deCODE Genetics consisting of two

deletion carriers and five duplication carriers in addition to 1150 non-carriers was added.

Genotyping and QC
The genotypes were obtained by genotyping with commercially available platforms,
performed at participating sites for each cohort (Supplementary Table 1). Individuals

were excluded exclusively based on quality control (QC) parameters from the CNV
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calling. No exclusion was done due to ancestry in the primary analysis but the effect of

ancestry was evaluated in a separate analysis (see below).

CNYV calls and validation in the core ENIGMA-CNYV sample

Almost all cohorts had CNVs called and identified in a unified manner as described
previously". In brief, CNVs were called using PennCNV*’ and appropriate population
frequency (PFB)-files and GC (content)-model files (Supplementary Table 3) (See
Supplementary Notes 2 and 3). Samples were filtered and CNVs identified based on
standardized quality control metrics'® (Supplementary Notes 2 and 3). The 1q21.1 distal
region was well-covered by all arrays (Supplementary Figure 2). CNVs overlapping the
region of interest (1q21.1 distal and 1q21.1 distal and proximal) were identified with the
R package iPsychCNV, visualized and manually inspected.

Image acquisition and processing

All brain measures were obtained from structural T1-weighted MRI data collected at
participating sites around the world and analyzed with the standardized image analysis,
FreeSurfer, quality assurance and statistical methods as per the harmonized neuroimaging
protocols developed within ENIGMA2® and ENIGMA3
(http://enigma.ini.usc.edu/protocols/imaging-protocols/). Further detail on data
processing is provided in Supplementary Note 4. Details on study, scanner, vendor, field
strength, sequence, acquisition parameters and FreeSurfer versions used are outlined in

Supplementary Table 4.

Statistical Analysis
Imaging data processing and CNV calling were performed locally and de-identified CNV
and imaging data were provided for a central mega-analysis. One of a pair of duplicates

was kept. Relatives were removed from the sample used for the main analysis. In
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addition, we conducted a number of sensitivity analyses to test the robustness of the
results (Supplementary Note 5, Supplementary Tables 5, 6, 7 and 8). Individuals with a
minimum overlap of 0.4 to regions with known pathogenic CNVs (Supplementary Table
2) were excluded from the analysis regardless of copy number status as were individuals

from scanner sites without 1q21.1 distal CNV carriers.

Brain measures were normalized in R v3.3.2 by an inverse normal transformation of the
residual of a linear regression on the phenotype correcting for covariates as done
previously'”. For the primary analysis, covariates were age, age’, sex, scanner site and
ICV. In the analysis of ICV, ICV was not included as a covariate. These final covariance-
corrected values were used in downstream analysis and are reported for each measure.
For comparison between groups, normalization was carried out including only the groups
addressed (deletion and non-carriers, duplications and non-carriers) except for the
deletion versus duplication comparison, where values from normalization of the entire

dataset was used due to the low numbers.

For the copy number dosage effect analysis (i.e. the effect on brain structure of 1g21.1
distal copy number variation), a linear regression on the copy number status of the
individuals (deletion=1, normal=2, duplication=3) was performed using the following
model: covariance-corrected, normalized brain measure ~ copy number (deletion=1, non-
carrier=2, duplication=3). For comparison between groups, a two sample two-sided t-test
assuming equal variance in all carrier/non-carrier groups was employed (R v3.3.2) where
deletion or duplication carriers were compared either to each other or to non-carriers. To
correct for the multiple comparisons, we calculated the number of independent outcome

measures through spectral decomposition of a correlation matrix using MatSpDlite
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(https://neurogenetics.qimrberghofer.edu.au/matSpDlite/) of the three global, seven
subcortical and 68 regional cortical measures. Based on the ratio of observed eigenvalue
variance to its theoretical maximum, the estimated equivalent of independent measures
was 36. Thus, we set the significance threshold at 0=0.05/36=0.0014. We report the
uncorrected p-values throughout the manuscript.

Effect size is calculated as the absolute effect size (the difference in mean between the
two copy number groups in the t-test — which, in this case, equals Cohen’s d as the
standard deviation of the normalized brain measures is one) and the estimate of beta in
the linear regression. Plots were generated using R library ggplot2 v2.2.1°°. Regional
cortical visualisation was done with the R package ggseg v1.5.1.

In a novel analysis, the independent Icelandic data was processed and analyzed as the
main dataset. We meta-analyzed the results using the R package metafor v2.0.0, as

. 15
previously .

Cognitive task performance data

We downloaded behavioral performance measures on seven cognitive tests (the pairs
matching task, the reaction time task, reasoning and problem solving tests, the digit span
test, the symbol digit substitution test and the trail making A and B tests) from the UK
Biobank repository, performed by at least 10% of the participants. The results were
processed following the general approach by Kendall et al'®. For more details, see
Supplementary Note 6. For the analysis of the seven cognitive measures, we set the

significance threshold to a=.05/7=.007.

Mediation analysis
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Mediation analyses were done with the R package mediation v4.4.7. Brain measures were
normalized as described above and cognitive tasks were corrected for age, age” and sex
prior to input into the analysis. We report the proportion of the total effect of the CNV on
cognitive task performance mediated by the brain measures (“path ab“/“path c”’), with p-
values calculated through quasi-Bayesian approximation using 5000 simulations. We set
the significance threshold at a=.05/((2+4)x6)=1.4 x 10~ given the test of two structures
for deletion and four for duplication carriers on six cognitive tests. The digit span test was
excluded since no 1q21.1 CNV carriers had results from both this cognitive test and brain

structural data.

Data availability

The authors declare that the data supporting the findings of this study are available within
the paper and its supplementary information files. The data was gathered from various
resources, and material requests will need to be placed with individual PIs. I.E.S. can
provide additional detail upon correspondence. Data from PING is available at NIMH

Data Archive: https://ndar.nih.gov/edit_collection.html?id=2607

Results

Sample characteristics

The main 1g21.1 distal (146.5-147.4Mb, hg19) brain structural dataset consisted of 28
deletion and 22 duplication carriers and 37,088 non-carriers (derived from the same
scanner sites as the CNV carriers) from ENIGMA-CNYV and UK biobank (Table 1,
separate demographics in Supplementary Table 9). The age of CNV carriers was lower
(41.7£19.0 (deletions), 55.4+12.7 (duplications), respectively) than that of non-carriers

(61.1£12.1) (Table 1). Eleven deletion carriers and seven duplication carriers had a
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known neurological, neurodevelopmental or psychiatric diagnosis or had been recruited
in a clinical CNV study. The remaining carriers either did not have an established
diagnosis or were recruited in studies from which diagnostic information was unavailable
(Table 1, Supplementary Table 10). Of the 37,088 non-carriers, 6.5 % (2,425) had an

established neurological, neurodevelopmental or psychiatric disorder.

1g21.1 distal CNV associated with global cortical surface structures

For our main dataset, there was a significant positive association between the number of
1g21.1 distal copies and ICV (B =1.47,P=2.8 x 10% ) as well as cortical surface area (3
=0.81,P=1.1 x 10®) (Figure 1, Supplementary Table 5) at a significance threshold of
P<0.0014 after correction for age, agez, sex, scanner site and ICV. In contrast, a
significant negative copy number dosage effect was identified for the caudate ( = -0.49,
P =6.9 x 10™) and hippocampal volumes (B =-0.56, P = 1.3 x 10™*) T-tests indicated a
decrease in ICV (Cohen’s D = -1.84 (-17%), P = 1.6 x 10™?) for deletion carriers and an
increase for duplication carriers (Cohen’s D = 0.90 (+10%), P = 2.3 x 107), respectively,
compared to non-carriers (Supplementary Table 6). For a raw value plot of ICV, see
Supplementary Figure 3. The cortical surface area dosage effect was primarily driven by
the deletion carriers with a significantly lower total cortical surface area (Cohen’s D = -
1.13 (-23%), P = 2.1 x 10”%) and the dosage effect on caudate and hippocampus was
primarily driven by duplication carriers with significantly smaller caudate (Cohen’s D = -
0.71 (-16%), P = 0.0012) and hippocampal (Cohen’s D =-0.92 (-15%), P = 4.1 x 107)
volumes than non-carriers (Figure 1, Supplementary Table 7). Adding an independent
Icelandic dataset with two deletion, five duplication and 1150 non-carriers (Table 1) in a

meta-analysis strengthened the majority of the dosage results (Supplementary Figure 4,



470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

18

Supplementary Tables 11 and 12) and revealed additional significant between-group
differences in nucleus accumbens, caudate and putamen (Supplementary Table 12).
A number of sensitivity analyses was run on the main dataset, namely:

a) Matching each carrier with one non-carrier for age, sex, scanner site and ICV or
age, sex, scanner site;

b) including only: i) non-affected individuals (i.e. excluding individuals with a
known neurodevelopmental or neurological disorder diagnosis; ii) adults
(age>=18); iii) non-affected adults; iv) children (age<18); v) ENIGMA-CNV or
vi) UK biobank;

c) controlling for ancestry;

d) excluding ICV as a covariate or;

e) including first and second-degree relatives (see Supplementary Note 5 for
methods).

These analyses validated the overall effects (Supplementary Tables 5 and 6).

The 1q21.1 distal CNYV is associated with regional brain structures

The largest dosage effects for regional cortical surface area were found in the frontal
lobes followed by the cingulate cortex - with additional significant effects in three
regions of the parietal and temporal lobes (Figure 2, Supplementary Table 7). Likewise,
through #-tests, the largest effects in both deletion and duplication carriers in comparison
to non-carriers were observed in the frontal and cingulate cortices (Figure 3, ,

Supplementary Table 8).

For regional cortical mean thickness, we identified significant negative dosage effects in
the superior temporal region and significant positive dosage effects for the pericalcarine

region (Figure 2, Supplementary Tables 7 and 8). Similarly, significant increases in mean
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cortical thickness were observed in deletion carriers versus non-carriers in the
parstriangularis and superior temporal regions and a significant decrease in the
pericalcarine region (Figure 2, Supplementary Table 8). All regional results were
corrected for age, age?, sex, scanner site and ICV. Sensitivity analyses similar to those
performed for subcortical regions confirmed the robustness of the results (Supplementary

Tables 7 and 8).

1g21.1 distal CNV associated with cognitive performance and mediation by brain
structures

Deletion and duplication carriers had different cognitive profiles in comparison to non-
carriers when testing for association in seven different neuropsychological tests available
from the full UK biobank sample: Deletion carriers had significantly poorer performance
in three tests: symbol digit substitution, trail making B and pairs matching while
duplication carriers had significantly poorer performance in two tests: reaction time and
the reasoning and problem solving task (Table 2).

Testing the effect of brain structures on cognitive tests in UK biobank participants, larger
ICV and total surface area were associated with better performance on almost all tests
(Table 3, see Supplementary Table 13 for sample size details). A larger hippocampus was
associated with better performance for symbol digit substitution, trail making A and B
(Table 3) and a larger caudate was associated with higher performance on trail making A
(Table 3).

Next, we tested whether the brain structures significantly associated with 1q21.1 distal
CNV carriers might mediate the effect of the CNV on cognition. For two of the three
tests associated with deletion carrier status, there were significant mediation effects

(significance threshold 1.4 x 10™*): Cortical surface area and ICV accounted for 5% and
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10%, respectively, of the poorer performance of deletion carriers on symbol digit
substitution, and 7% and 17%, respectively, of their poorer performance on the trail

making B test (Table 3).

Discussion

Our main finding was a significant positive dosage effect in humans of 1q21.1 distal copy
number on ICV and cortical surface area, with the largest differences in frontal and
cingulate cortical surface area. We also identified a significant negative dosage effect on
caudate and hippocampal volumes. A number of sensitivity analyses confirmed the
robustness of the results. Both 1q21.1 distal deletion and duplication carriers showed
poorer cognitive performance, although on different tests, with an indication that

decreased ICV/cortical surface area might mediate the effect in deletion carriers.

The 1¢q21.1 distal CNV causes copy dosage effect on brain structures.

We found a strong effect of the 1q21.1 distal CNV on total cortical surface area while no
overall effect on mean cortical thickness was observed. A specific increase in size of the
cortical surface area with little effect on cortical thickness is observed throughout
mammalian evolution including the primate lineage leading to humans®'. This possibly
reflects that cortical thickness and surface area appear to be driven by distinct genetic
processes . This pattern may be the result of an increased number of symmetric or self-
renewing cell-division cycles, leading to an expansion of the neural progenitor pool and
subsequently to an increase in the number of cortical neurons - in line with the radial unit
hypothesis®'. Interestingly, although not significant, mean cortical thickness tended to
decrease in deletion carriers in the frontal cortical surface areas with the highest effect

sizes, resembling a pattern found in lissencephaly®’. This could suggest that large
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regional decreases in cortical surface area correlate inversely with mean cortical
thickness.

The biomechanical forces of brain growth are thought to form the expansion of the
cranium so that the skull grows in harmony with the expanding brain>*. Thus, the positive
copy number dosage effect on cortical surface area may directly trigger the effect on head

. 19-21
circumference'’

and ICV of 1q21.1 distal carriers due to modifications in pressure.
Altered mechanical pressure might also cause the negative copy number dosage effect on

hippocampus and caudate volumes, effects on subcortical volumes also observed in a UK

biobank exploratory study on six individuals with a 1q21.1 distal duplication .

Human-specific genes may affect the cortical surface area and cross-species effects
The positive copy number dosage effect on brain structure with the same direction as for
weight and height**** likely results from altered gene expression as observed in 1q21.1
distal CNV cell lines*’. In an independent experiment on fetal tissue, we also observed a
dynamic expression patterns of the genes in the 1g21.1 interval consistent with potential
roles in cortical neurogenesis and development (Supplementary Note 7, Supplementary
Figures 5 & 6). Genome-wide association studies (GWAS) based on the hg19 genome
assembly have not identified hits in the 1q21.1 genomic region for ICV>’, total cortical or
regional surface area’>>’. Assembly of the 1q21.1 region™® and thus gene discovery is

20, 42
9-42 and has been

complicated due to the presence of numerous low copy number repeats
faulty until the GRCh38 genome assembly. This may explain the lack of GWAS hits in
the region.

Candidates for a dosage-dependent amplifier of the CNV-associated brain phenotypes are

the recently identified human-specific NOTCH2NL genes that confer delayed neuronal

differentiation and increased progenitor self-renewal’> > - in line with the radial unit



569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

22

hypothesis®'. The areas with the highest regional effect sizes overlap with the areas of the
highest expression of NOTCH2NLA and C in utero™ in concordancw ith n early
developmental effect such as the macrocephaly observed in utero in a 1q21.1 distal
duplication carrier’’. Our observations of a 2 % reduced skull diameter in the 1q21.1
deletion mouse (Supplementary Figure 7, Supplementary Notes 8 and 9) and recent
findings of decreased total brain volume focused on the temporo-parietal and subcortical
areas in the deletion mouse, suggests that genes overlapping between human and mice
(nine of ten mice genes are syntenic to the human region*'"), and not specific to humans
are also involved in the altered skull and brain morphology. However, although diameter
and volume are not directly comparable, the 17% decrease in ICV in human 1g21.1
deletion carriers would still point towards a substantial role of human-specific genes or
genes with altered functions in comparison to mice. This underlines the need for
additional data to disentangle which specific genes are involved in the skull and brain
structural phenotypes. Of note, we also observed shorter bones overall in the 1g21.1
deletion mice (Supplementary Figure 7, Supplementary Note 9) expanding on previous
head-tail length data *' and lower bone mineral density in female mice (Supplementary
Figure 8, Supplementary Note 9) which mirror bone characteristics from human deletion
carriers™ increasing the number of observed cross-species effects between the 1g21.1
mice and human 1g21.1 deletion carriers.

1q21.1 distal CNV deletion and duplication carriers show deficits in different
cognitive functions.

Our findings of widespread lower performance across several tests in different domains
for both carrier groups in the volunteer-based UK Biobank sample are in line with
cognitive results from a recent study>” and support that cognitive function in CNV

carriers largely without a neurodevelopmental diagnosis may still be compromised * '.
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Interestingly, the frontal and cingulate regions®’, with the greatest cortical effect sizes for
1g21.1 distal correlate particularly with cognitive function and have gone through the
greatest expansion during human development and evolution ®'. Our analyses indicated
that the decreases in cognitive task performance are partially mediated by the observed
differences in ICV and cortical surface area, reflecting the positive correlation between
brain volume and intellectual function in line with previous findings®. The decrease in
performance for several cognitive tasks in duplication carriers despite a larger ICV and
cortical surface area suggests that the positive correlations may only be applicable within
a certain narrower range. Interestingly, recent genetic analysis of NOTCH2NL in archaic
and modern humans revealed ongoing adaptive evolution towards a lower dosage of the
protein® suggesting negative effects of too much NOTCH2NL protein.

Our brain structural findings in 1q21.1 distal CNV carriers overlap with brain alterations
in associated disorders: e.g. ADHD®, ASD® schizophrenia®, bipolar disorder®’, major
depressive disorder® and subtypes of epilepsy® but the exact overlaps differ between
carrier groups. Of note, 1q21.1 distal deletion and duplication carriers display direct,
opposite effects on several brain structures while at risk for the same neurodevelopmental
diseases. Other pathogenic CNVs also display overlapping disease risk and similar

6, 8-15

opposite copy number effects including effects on cortical surface area in 22q11 and

16p11.2 proximal CNV carriers® '*'*

. These CNVs impact different genes but may
converge on the same downstream pathways altering cortical surface area formation,
similar to what has been reported for behavioral and neurocognitive phenotypes”’.

This also suggests that other risk factors interplay to cause disease. It also supports that

subgroups within neurodevelopmental disorders can be defined based on genetic profile

and brain structural differences.
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We demonstrate large effects of 1q21.1 distal CNVs on brain structure and cognition in
humans and recapitulation of the smaller head size and other skeletal characteristics in
1g21.1 deletion mice. These findings provide insight into molecular mechanisms
involved in critical stages of human brain development and mapping of gene dosages to

brain structural fingerprints.
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Table 3: Mediation analysis of brain structures over the association between 1q21.1
distal CNV carrier status and performance in the cognitive tasks in the UK Biobank.
Path B is the effect of the brain structure on cognition overall including all 1q21.1 deletion
and duplication carriers (4-13 CNV carriers in each group) and non-carriers (n=10,501-
30,924; for exact numbers, see Supplementary Table 13). Each calculation included 5000
simulations.

Path B - effect of brain
structure on cognition DELETION DUPLICATION
Prop. Prop.
Estimate (SE) P mediated P mediated P
Pairs matching
Caudate 0.0023 (0.0053) 0.66 3.5E-03 0.85
Hippocampus 0.005 (0.0052) 0.34 9.8E-03 0.68
SurfArea 0.031 (0.0055) 1.9E-08 -0.07 0.65 -4.4E-03 0.9
IcvV 0.027 (0.0054) 4.3E-07 -0.12 0.64 -0.07 0.51
Reaction Time
Caudate -0.0016 (0.0054) 0.77 -2.3E-03 0.67
Hippocampus 0.01 (0.0053) 0.053 0.01 0.04
SurfArea -0.0095 (0.0056) 0.091 0.02 0.13 7.3E-04 0.78
Icv 0.029 (0.0055) 2.4E-07 -0.1 0.07 -0.03 2.4E-03
Reasoning and problem solving
Caudate -0.0059 (0.0091) 0.51 5.7E-03 0.55
Hippocampus 0.0031 (0.0089) 0.73 -9.6E-05 0.95
SurfArea 0.052 (0.0094) 2.6E-08 0.06 0.250 -7.4E-04 0.97
IcV 0.15 (0.0092) 3.7E-59 0.25 0.24 0.18 0.04
Symbol digit substitution
Caudate 0.0011 (0.0077) 0.88 -4.2E-03 0.83
Hippocampus 0.04 (0.0075) 6.5E-08 -0.01 0.82
SurfArea 0.055 (0.0079) 3.8E-12 0.05 2.4E-03 6.9E-04 0.99
IcvV 0.066 (0.0079) 3.6E-17 0.1 4.0E-04 0.13 0.68
Trail Making A
Caudate 0.034 (0.0084)  5.7E-05 4.4E-04 1
Hippocampus 0.04 (0.0081) 1.0E-06 3.0E-03 0.97
SurfArea 0.046 (0.0086) 1.1E-07 0.09 0.19 1.1E-03 0.98
IcvV 0.059 (0.0085) 6.1E-12 0.21 0.20 -0.01 0.99
Trail Making B
Caudate 0.021 (0.0083) 0.012 -0.01 0.79
Hippocampus 0.04 (0.008) 6.9E-07 -0.01 0.86
SurfArea 0.082 (0.0085) 6.4E-22 0.07 8.0E-04 8.9E-03 0.92
IcvV 0.11 (0.0084) 1.2E-36 0.17 1.2E-03 0.16 0.73
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Figure legends

Figure 1: Cortical surface area and ICV show a positive dosage effect and caudate and
hippocampus a negative dosage effect to copy number in the 1q21.1 distal region in our
main sample (ENIGMA-CNYV and UK biobank). Boxplots of subcortical volumes, cortical
surface area and mean cortical thickness and ICV are shown. Deletion carriers (del) in red, non-
carriers (nc) in grey and duplication carriers (dup) in blue, respectively. The normalized brain
values are presented. Boxplots represent the mean. Copy number dosage effect is noted at the
bottom of each panel. Significant differences after correction between groups are noted as * =P <
0.0014, ** =P <0.00014, *** = 0.000014. Centre line represents median, box limits are the
upper and lower 25 % quartiles, whiskers the 1.5 interquartile range and the points are the
outliers. All analyses were corrected for age, age squared, sex, scanner site and ICV (except for

ICV).

Figure 2. Results from the t-tests and linear regression of 1q21.1 copy number variation on
regional cortical surface area and cortical thickness. 1* and 3™ rows: Effect sizes (Cohen’s d
for the t-tests, beta coefficient for the dosage/linear regression). 2™ and 4™ rows: Statistical
significance in —log10 of the p-value. Significant areas in rows 1 and 3 are marked with black
lines with increasing thickness for increasing significance (P<0.0014). The column names
indicate the comparisons with del=deletion carriers, nc=non-carriers, dup=duplication carriers.

2 .
All measures were corrected for age, age”, sex, scanner site and ICV.
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Supplementary Figures and Notes for: “1q21.1 distal copy number variants are

associated with cerebral and cognitive alterations in humans”

Overview, Supplementary Figures (pages 3-12):

Supplementary Figure 1: Age distribution per cohort contributing data to the current
study, with age in years on the y-axis and cohort name on the x-axis.
Supplementary Figure 2: Coverage of the 1q21.1 distal region by genotyping
platforms in ENIGMA-CNV.

Supplementary Figure 3: Bivariate plot of age (years) versus uncorrected ICV
(mm3).

Supplementary Figure 4. Forest plots on the dosage effect of copy number on
subcortical volumes, surface area, thickness and ICV.

Supplementary Figure S: Expression peak of the genes encoded in the 1q21.1
interval during human fetal corticogenesis.

Supplementary Figure 6: RNA-seq profile of genes in the 1g21.1 interval during

human corticogenesis.

Supplementary Figure 7: Skull diameter in 1q21.1 deletion knockout mice in
comparison to wildtype (WT) littermates.

Supplementary Figure 8: Body weight and bone size of 1q21.1 deletion mice in
comparison to wildtype (WT) littermates.

Supplementary Figure 9: Bone mass measurements in 1q21.1 mice and wildtype

(WT) litter mates.

Overview, Supplementary Notes (pages 13-20):




Supplementary Note 1: Extended information on datasets.

Supplementary Note 2: Details on CNV calling and QC.

Supplementary Note 3: Extended information on UK biobank CNV calls.
Supplementary Note 4: Extended info on image acquisition and processing.
Supplementary Note 5: Description of additional sensitivity and robustness analyses.
Supplementary Note 6: Details on cognitive task data processing

Supplementary Note 7: Details on human fetal transcriptional data

Supplementary Note 8: Df(h1q21)+/- mouse characterization

Supplementary Note 9: Results on the 1g21.1 distal deletion mouse

Overview, Supplementary tables, legends (pages 21-26):

(NOTE - this is ONLY legends - please refer to separately submitted excel sheet

for the entire tables)
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Supplementary Figure 1: Age distribution per cohort contributing data to the

current study, with age in years on the y-axis and cohort name on the x-axis.



144,500,000 145,000,000 148 508708 7*****1 46,000,000 146,500,000 147,000,000
1 {

ID: Aftymetrix6.0

-‘. . o a ,lll. o ’ .'l “ . o

R, " st amen n tsn, e s pass o P
o s ene 5 IR i SRR TT A s

ID: Axiom

— . - " ———— - rane - . .
- er e B et . ————e 1 of + fw et o o rerew -
1D: Exomechip
o 3 . s
L4t v - -
by = e
===n = Pom——
1D: K Hag$!
FrEcein e gmas o e TYTEURR , -
s, S Lt b LR PR A ST P iy
e . : .

1D: lilumina OmniExpress

= A P oot ot .
cema men o . o e mpme sas s e sseeme s semmee mme . -
= T Py
wes  nem . e et maie et s me oo el o«
~ o .
)
. o B
1D: HuminaHumanCoreExome
el e ettt e e
- emrn e m— erimm sm s e P - .
——— v . e 0w wumam we cema ssssees - . o e
ID: MuminaHumanGuadé10
P " Pad = o il -
Lapad gt St ol A e oo ) TN -
n e som e PR 4 tm e cememm = e tes s - ames P -
2. v ] +
o osem o wnel - -
. i . I~
o hed L3
”' e F < F oot W -
ath - R ¥ -] ¥
1D: PsychChip
e Ao revon e 5
[ — e sl m mmmmeEm e s . - - .
-t .. - te———- cremms mar e . - .

Supplementary Figure 2: Coverage of the 1q21.1 distal region by genotyping
platforms in ENIGMA-CNYV. Log R ratio is shown in red, B-allele frequency in
blue. The vertical black lines delimit the boundaries of the 1q21.1 distal region.
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[lluminaHuman660-Quad, [1luminaOmniExpressExome are mock data. The rest is

based on real data.
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RNA-seq profile of genes in the 1q21.1 interval during human corticogenesis. The expression value for each gene
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Supplementary Figure 7: Skull diameter in 1q21.1 deletion knockout mice in
comparison to wildtype (WT) littermates. A. Median skull diameter (n=10-12 per
group). The horizontal lines demark P-values as group-wise comparisons (non-
parametric Mann-Whitney U test) between the genotype groups. B. X-ray showing

the mouse skull with the green line indicating how the skull diameter was determined.
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Supplementary Figure 8: Body weight and bone size of 1q21.1 deletion mice in
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comparison to wildtype (WT) littermates. A. Median body weight. B. Tibial (lower

leg) length measured on X-rays. P-values show group-wise comparisons (non-

parametric Mann-Whitney U test) between the genotype groups (n=10-12 in each

group).
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Supplementary Figure 9: Bone mass measurements in 1q21.1 mice and wildtype
(WT) litter mates. Median bone mineral density (BMD) in femur (upper leg) (A) and
whole body (D). Median bone mineral content (BMC) in femur (B) and whole body
(E). Bone area in femur (C) and whole body (F). P-values show group-wise

comparisons (non-parametric Mann-Whitney U test) between the genotype groups.
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SUPPLEMENTARY NOTES

Supplementary Note 1: Extended information on datasets and test for
differences in demographics.

Diagnosis-information in ENIGMA-CNV was based on information from the
different datasets. In the UK biobank, diagnosis was extracted as Datafield 41202:
Diagnoses - main ICD10 and 41204 Diagnoses - secondary ICD10. If either of these
contained an F (mental) or G (neurological) disorder, these were coded as affected
and the ICD10 disorder was noted.

For the core ENIGMA-CNYV dataset, family information was based on pi-hat
estimated for pairs of individuals, and only one relative (if more than two) from pairs
with pi-hat >0.2 was kept. CNV carriers were selectedly kept over non-carriers. For
ECHO_DEFINE and the 16p11.2 European Consortium, relatedness was based on
information from the clinican. For the UK biobank, relatives were extracted from
Datafield 22011: Genetic relatedness pairing and Datafield 22012: Genetic
relatedness factor. One of each pair with a kinship coefficient above 0.053 (that is
more related than 1% cousins) was removed.

Tests for differences between groups for demographic data applied a test included in
the R package tableone v0.7.3 — chi square test with continuity correction for

categorical values and ANOVA for continuous variables.

Supplementary Note 2: Details on CNV calling and QC. All PFB-files were based
on Human Genome Build NCBI36/hg18 except for UK biobank, ECHO-DEFINE and
parts of 16p11.2 European Consortium that used NCBI37/hg19. PFB-and GC-files
were selected based on publicly available data from the PennCNV homepage or self-

generated: in the case of cohorts primarily consisting of Asian and African
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individuals, a PFB-file was generated through PennCNV compile pfb.pl using all
genotyping arrays from the cohort. The PFB-file used is noted in Supplementary

Table 10.

The following quality control metrics were used: Adjacent CNVs separated by a gap
less than 20% of the combined length of the two CNVs were merged until no more
gaps of <20% existed, and CNVs based on less than 15 SNPs were excluded. Only
samples with standard deviation (SD) of normalized intensity (LRR) <0.35, B allele
frequency (BAF) drifting value <0.01 and wave factor value between -0.05 and 0.05

were included.

The 1g21.1 distal region was well-covered by all arrays (Figure S8). CNVs
overlapping the region of interest (1q21.1 distal and 1q21.1 distal and proximal) were
identified with the R package iPsychCNV SelectSamplesFromROI with parameters
OverlapMin = 0.4 and OverlapMax = 5, visualized with iPsychCNV StackPlot and
manually inspected. None of the 1q21.1 distal carriers carried additional genomic
imbalances (Supplementary Table 1) except for three duplications that extended into
the 1q21.1 proximal region (Supplementary Table 2), a known susceptibility factor
for thrombocytopenia-absent radius (TAR) syndromel. In the statistical analysis,
individuals with a minimum overlap of 0.4 to regions with known pathogenic CNVs
(Table S10) were excluded regardless of copy number status as were individuals from

scanner sites without 1g21.1 distal CNV carriers.

Carriers in the 16p11.2 European consortium cohort were identified based on report
from the cytogeneticist who did the genetic test in the clinic and was thus based on
either CGH array or FISH (Fluorescent In Situ Hybridization) - the identification

method for each individual carrier is noted in Supplementary Table 2. Non-carriers in
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the 16p11.2 European consortium cohort were either selected from the general
population (excluding individuals with a neurodevelopmental or psychiatric
diagnosis) or familiar controls who tested negative for the 1q21.1 distal and proximal
CNV or familial controls from a 16p11.2 proximal and distal CNV study - five of the
latter had a neuropsychiatric diagnosis. Carriers in the ECHO DEFINE were
identified based on the report from the cytogenetist after genetic test in the clinic with

Psych Chip.

Supplementary Note 3: Extended information on UK biobank CNV calls.
Anonymised genotyped data was downloaded as 12r & baf-files from UK biobank
showcase for chromosomes 1-22, X, Y, M & XY. In addition, snp-files were
downloaded. They were stored and processed on a secure Unix server.

For the initial steps, the 12r- and baf-files were split into separate files for each
individual containing both 12r and baf-values in 20 batches, each containing 25,000
individuals per batch [the last batch contained 13,377). Subsequently, SNP-names
were added to the files. CNVs were called in subbatches of 1000 individuals per batch
using PennCNV °7 and self-generated PFB- and GCC-model files (NCBI37/hg19) and
affygw6.hmm. Subsequent filtering and visualization was done as for the main dataset
above except that the LRR _SD cut-off was set at 0.50 given that we observed reliable
CNV calls within these ranges. We did not filter based on number of CNVs or
genotype call rate. These are quite relaxed filtering criteria but since all 1g21.1 CNVs
were visualized and inspected and thus filtered for false positives, we did not apply
more stringent parameters. 59 individuals were excluded from the entire UK biobank

using these criteria.
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Supplementary Note 4: Extended info on image acquisition and processing. Each
site contributed volumes for the left and right hemispheres of the accumbens, caudate,
putamen, pallidum, amygdala, hippocampus and thalamus in addition to right and left
34 regional cortical surface areas and 34 cortical average thicknesses, total surface
area and total mean cortical thickness as well as estimated intracranial volume (ICV).
The total volume, surface area or mean thickness of each structure was calculated by
adding the left and right together. We excluded each individual measure if it deviated

more than +/- 4SD from the mean for each individual scanner site.

Supplementary Note 5: Description of additional sensitivity and robustness
analyses.

We re-analysed the dataset in the following way: (a) MATCHED analysis: Matching
each CNV carrier with one non-carrier. The R package Matchit v2.4 was used to
match each CNV carrier with one non-carrier based on sex, age, scanner site and ICV.
(b) NON-AFFECTED only analysis: Keeping only non-affected individuals (i.e.
individuals without a known diagnosis of a brain disorder), (c) NON-AFFECTED
ADULTS analysis: Keeping only non-affected adults (age>=18) (d) ADULTS
analysis: Only including adults with age>=18 (¢) CHILDREN analysis: Only keeping
children with age<18, or (f) ENIGMA-CNV ONLY: Keeping only ENIGMA-CNV
derived individuals in analysis or (g) UK biobank ONLY: Keeping only UKB-derived
participants or (h) POPULATION STRUCTURE analysis: Controlling for population
structure by including 4 genetic principal components as covariates calculated based
on standardized multidimensional scaling analyses of genome-wide genotype data

conducted at each site (i) NO ICV model analysis: Excluding ICV as covariate or j)

16



(f) INCLUDING RELATIVES analysis: Including all relatives (first- or second-

degree relatives) that was removed in the primary analysis.

Supplementary Note 6: Details on cognitive task data processing

The Pairs Matching task (field 399), tested episodic memory, with six pairs of cards
being shown for three seconds to participants, before being turned over, after which
the participants were asked to identify the matching pairs. We used the total number
of errors made. The Reaction Time task (field 20023), tested simple processing speed
through twelve rounds of a game where participants had to click a button as quickly
as possible when shown two matching cards. We used the mean reaction time. Fluid
Intelligence (field 20016), tested reasoning and problem solving through thirteen
verbal and numerical reasoning questions, which had to be answered within two
minutes. We used the total number of correct answers. The Digit Span task (field
4282) tested numeric working memory by presenting progressively longer numbers to
participants and asking them to recall these once the number had disappeared. We
used the maximum number of digits correctly recalled. The Symbol Digit Substitution
task (field 20195) tested complex processing speed through the matching of numbers
to a set of symbols. We used the number of correct substitutions. The Trail Making A
and B tasks (fields 20156 and 20157) tested visual attention by asking participants to
connect scattered circles according to numbers (trail A) and to alternating numbers
and letters (trail B). We used the time taken to complete these tests for our analyses.
All data was recoded so that higher scores indicate higher performance.
Supplementary Note 7: Details on human fetal transcriptional data

Human fetal tissue collection and preparation was done as described previously'” -

human fetuses were obtained following medical pregnancy termination. Fetuses aged
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7 gestational weeks (GW) (2 males), 9 GW (1 male, 1 undetermined), 12 GW (1
female, 1 undetermined), 15 GW (1 male), and 21 GW (1 male) were used for the
RNA sequencing and in situ hybridization of cortical tissue. All cases were examined
with standard feto-pathological procedures and none displayed clinical or
neuropathological evidence of brain malformation. The brain was removed within 6
hours of expulsion and RNA extracted and cDNA prepared”. The 350-700bp size
cDNA fraction was sequenced from both ends using Hiseq 2500 Rapid mode v3
(Illumina). Transcriptome analysis was performed as previously described?.
Expression values are calculated as the unit Fragment per kilobase and million reads
(FPKM) and those for human-specific duplicated genes (NBPF10, NOTCH2NLA,
HYDIN2, NBPF12, LOC728989, NBPF11, NBPF14, and NOTCH2NLB) are
corrected on the basis of the computer simulation performed in the previous study
(cFPKM; corrected FPKM)?. The study was approved by three relevant Ethics
Committees (Erasme Hospital, Université Libre de Bruxelles, and Belgian National
Fund for Scientific Research FRS/FNRS) on research involving human subjects.

Written informed consent was given by the parents in each case.

Supplementary Note 8: Df(h1q21)+/- mouse characterization

16-week-old male and female heterozygous 1q21.1 deletion knockout mice® and
wildtype mice were sacrificed for bone analysis (n=10-12 in each genetic group).
Body weight was recorded. Femur and tibia were collected and stored in ethanol at 4
C and in saline at -20 C until further analysis. Animals were genotyped from Taconic
(Ejby, Denmark) and genotyping was repeated on tail samples collected after
sacrifice. Whole body DXA scans were obtained using a Piximus densitometer (GE

Lunar, Madison, WI, USA). Whole-body and femoral bone mineral density (BMD),
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bone mineral content and bone area were analysed. X-ray scans of the skull, upper
limbs and lower limbs were obtained using a Faxitron MX-20 small animal x-ray
system (Faxitron, Tucson, AZ, USA). Skull diameter, femur length and width, and
humerus and tibia length were measured using the ruler function in a dicom viewer
program. Measurements were done by staff blinded to genotype groups. 1q21 and
wildtype mice were compared using non-parametric Mann-Whitney U test. To take
variation in bone turnover between sexes into account, males and female mice (10-12
mice in analytical group) were analyzed separately. Differences were considered

significant at P<0.05. All animals were included in the analyses.

Supplementary Note 9: Results on the the 1q21.1 deletion mouse

In a comparison between 1q21.1 deletion mice (Df(h1g21) +/- mouse?)) and their
wild-type littermates (n=10-12 mice per group), we found a significant decrease in
skull diameter in the deletion mice (2% decrease, P=0.007 (females) and P=0.004
(males)) (Figure 4). Also, the deletion mice displayed lower weight and shorter tibial
(lower leg) length (P=0.01 (females), P = 0.023 (males)) (Supplementary Figure 4).
Finally, bone mineral density (BMD), bone mineral content (BMC) and bone area
were lower in female 1q21.1 deletion mice compared to wild-type littermates
(P<0.0005 (BMD and BMC) and P=0.004 (area)) whereas male deletion mice - unlike
the deletion females - displayed an increased femoral bone (upper leg) area (P=0.022;

Supplementary Figure 5).
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SUPPLEMENTARY TABLES LEGENDS:

(NOTE - this is ONLY legends - please refer to separately submitted excel sheet

for the entire tables)

Supplementary Table 1: Specification of all cohorts in ENIGMA CNYV. Study
design, participant demographics, and references to articles containing descriptions of
individual inclusion and exclusion parameters for all datasets in ENIGMA-CNV
collected up until Sep 30 2019. Data sets contributing data to the 1q21.1 distal

analysis are marked with a star.

Supplementary Table 2: CNVs of Interest. Individuals with a minimum overlap of
0.4 to these CN'Vs were excluded from the analysis. Coordinates are Human Genome

Build NCBI36/hg18 and GRCh37/hg19.

Supplementary Table 3: Chips and corresponding PFB-files used for PennCNV

CNYV calling.

Supplementary Table 4: Technical details concerning scanners and acquisition

parameters utilized at the participating ENIGMA-CNYV scanner sites

Supplementary Table 5: Sensitivity analyses — dosage effect of 1q21.1 distal copy
number on subcortical volumes in the main sample. The effect size (B of the linear
regression) is presented with 95 % confidence intervals. A linear regression based on
the copy number state of the individuals (deletion=1, normal=2, duplication=3) was

performed on normalized brain measures corrected for plusICV: age, age squared,
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sex, scanner site and ICV (except for ICV) or nolCV: age, age squared, sex, scanner
site. Analysis was performed on : ALL — all individuals, ADULTS — adults (age >18),
NON-AFFECTED - individuals without a known diagnosis of a brain disorder, NON-
AFFECTED ADULTS — adult individuals without a known diagnosis of a brain
disorders, MATCHED CONTROLS - matching each carrier with one non-carrier
based on age, sex and scanner site or matching each carrier with one non-carrier based
on age, sex, scanner site and ICV, POPULATION STRUCTURE - checking effect of
population structure on individuals. Only individuals with accessible ancestry
information were included in the analysis. ENIGMA-CNV ONLY — ENIGMA-CNV
dataset exclusively. UKB ONLY — UK biobank dataset only, INCLUDING
RELATIVES- including relatives with more than third degree relationships. Results
were considered statistically significant if they were below a Bonferroni-corrected P-

value of 0.0014. * =P <0.0014, ** =P <0.00014, ***=P<0.000014.

Supplementary Table 6: Sensitivity analyses - T-tests on subcortical volumes
between different 1q21.1 distal copy number groups in the main sample. The
effect size (Cohen’s D) including 95 % confidence interval is presented. T-tests were
performed on normalized values of brain measures plusICV: age, age squared, sex,
scanner site and ICV (except for ICV) or noICV: age, age squared, sex, scanner site.
Analysis was performed on: ALL — all individuals, ADULTS — adults (age >18),
CHILDREN - children (age<18 years), CHILDREN - children (age<18 years),
NON-AFFECTED - individuals without a known diagnosis of a brain disorder, NON-
AFFECTED ADULTS — adult individuals without a known diagnosis of a brain
disorders, MATCHED CONTROLS - matching each carrier with one non-carrier

based on age, gender and scannersite or matching each carrier with one non-carrier

22



based on age, sex, scannersite and ICV, POPULATION STRUCTURE - checking
effect of population structure on individuals. Only individuals with accessible
ancestry information were included in the analysis, ENIGMA-CNV ONLY —
ENIGMA-CNV dataset exclusively. UKB ONLY — UK biobank dataset only,
INCLUDING RELATIVES- including relatives with more than third degree
relationships. Results were considered statistically significant if they were below a
Bonferroni-corrected P-value of 0.0014. * =P <0.0014, ** =P <(0.00014,

***%=p<(.000014.

Supplementary Table 7: Sensitivity analyses - 1q21.1 distal dosage effect on
regional cortical surface area and mean cortical thickness. The effect size (§ of
the linear regression) is presented with 95 % confidence interval. A linear regression
based on the copy number state of the individuals (deletion=1, normal=2,
duplication=3) was performed on normalized brain measures corrected for plusICV:
age, age squared, sex, scanner site and ICV (except for ICV) or noICV: age, age
squared, sex, scanner site. Analysis was performed on all individuals with measures
available. Analysis was performed on: ALL — all individuals, ADULTS — adults (age
>18), NON-AFFECTED - individuals without a known diagnosis of a brain disorder,
NON-AFFECTED ADULTS - adult individuals without a known diagnosis of a brain
disorders, MATCHED CONTROLS - matching each carrier with one non-carrier
based on age, gender and scanner site or matching each carrier with one non-carrier
based on age, sex, scanner site and ICV, POPULATION STRUCTURE - checking
effect of population structure on individuals. Only individuals with accessible
ancestry information were included in the analysis NO RELATIVES- excluding

relatives with more than third degree relationships. ENIGMA-CNV ONLY —
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ENIGMA-CNYV dataset exclusively. UKB ONLY — UK biobank dataset only,
INCLUDING RELATIVES- including relatives with more than third degree
relationships. Results were considered statistically significant if they were below a
Bonferroni-corrected P-value of 0.0014. * =P < 0.0014, ** =P < 0.00014,

**%=p<(0.000014.

Supplementary Table 8: Sensitivity analyses: T-tests on regional cortical surface
area and mean cortical thickness. The effect size (Cohen’s D) including 95 %
confidence interval is presented. T-tests were performed on normalized values of
brain measures plusICV: age, age squared, sex, scanner site and ICV (except for ICV)
or nolCV: age, age squared, sex, scanner site. Analysis was performed on all
individuals with measures available. Analysis was performed on: ALL — all
individuals, ADULTS — adults (age >18), CHILDREN - children (age<18 years),
CHILDREN - children (age<18 years), NON-AFFECTED - individuals without a
known diagnosis of a brain disorder, NON-AFFECTED ADULTS — adult individuals
without a known diagnosis of a brain disorders, MATCHED CONTROLS - matching
each carrier with one non-carrier based on age, gender and scannersite or matching
each carrier with one non-carrier based on age, sex, scannersite and ICV,
POPULATION STRUCTURE - checking effect of population structure on
individuals. Only individuals with accessible ancestry information were included in
the analysis. ENIGMA-CNV ONLY — ENIGMA-CNYV dataset exclusively. UKB
ONLY - UK biobank dataset only, INCLUDING RELATIVES- including relatives
with more than third degree relationships. Results were considered statistically
significant if they were below a Bonferroni-corrected P-value of 0.0014. * =P <

0.0014, ** =P < 0.00014, ***=P<0.000014.
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Supplementary Table 9: Demographic details of ENIGMA-CNV and UK

biobank separately.

Supplementary Table 10: Extended information on 1q21.1 distal carriers.
Established diagnosis (1 = yes, 0 = no), DiseaseType = known diagnosis or type of
study. Chip = genotyping chip used for CNV calling. No of rels = number of known
relatives in dataset. Relative = relative in dataset, relative removed = whether

individual was removed from the analysis without relatives.

Supplementary Table 11: Meta-analysis of dosage effect of 1q21.1 distal copy
number on subcortical volumes. The effect size (P of the linear regression) is
presented. A linear regression based on the copy number state of the individuals
(deletion (del) =1, non-carrier (nc) =2, duplication (dup)=3) was performed on
normalized brain measures correcting for age’, age, sex and scannersite (and ICV) ) in
the ENIGMA-CNYV and UK biobank (main sample) and the independent Icelandic
cohorts. A final effect size estimate of the combined sample was obtained using a
fixed effects meta-analysis framework (metafor). Results were considered statistically
significant if they were below a Bonferroni-corrected P-value of 0.0014. * =P <
0.0014, ** =P < 0.00014, ***=P < 0.000014, CI = confidence. Q = statistics for the
test for heterogeneity, p(Q) = p-value for the test for heterogeneity, 12 =heterogeneity

levels.

Supplementary Table 12: Meta-analysis of t-tests on subcortical volumes

between different 1q21.1 distal copy number groups. The effect size (Cohen’s D)
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including 95 % confidence interval is presented. T-tests were performed on
normalized values of brain measures correcting for age’, age, sex and scanner site
(and ICV) in the ENIGMA-CNV and UK biobank (main sample) and the independent
Icelandic cohorts. A final effect size estimate of the combined sample was obtained
using a fixed effects meta-analysis framework (metafor). Results were considered
statistically significant if they were below a Bonferroni-corrected P-value of 0.0014. *
=P <0.0014, ** =P <0.00014, ***=P < (.000014, CI = confidence. Q = statistics
for the test for heterogeneity, p(Q) = p-value for the test for heterogeneity, 12

=heterogeneity levels.

Supplementary Table 13: Available sample sizes per task, per carrier group, for
the analyses linking the neuroimaging measures to the cognitive measures. In the
analyses, we included all 1q21.1 CNV carriers and non-carriers in the UK Biobank

with data on the seven cognitive tasks and brain structures.
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