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Abstract 247 

Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) 248 

carriers are predisposed to multiple neurodevelopmental disorders including 249 

schizophrenia, autism and intellectual disability. Human carriers display a high 250 

prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. 251 

The underlying brain structural diversity remains largely unknown. 252 

We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV 253 

collaboration and the UK biobank and identified 28 1q21.1 distal deletion and 22 254 

duplication carriers and 37,088 non-carriers (48 % male) derived from 15 distinct MRI 255 

scanner sites.  With standardized methods, we compared subcortical and cortical brain 256 

measures (all) and cognitive performance (UK biobank only) between carrier groups also 257 

testing for mediation of brain structure on cognition. We identified positive dosage 258 

effects of copy number on intracranial volume (ICV) and total cortical surface area, with 259 

largest effects in frontal and cingulate cortices, and negative dosage effects on caudate 260 

and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in 261 

cognitive tasks from the UK biobank with intermediate decreases in duplication carriers 262 

and somewhat larger in deletion carriers – the latter potentially mediated by ICV or 263 

cortical surface area.  These results shed light on pathobiological mechanisms of 264 

neurodevelopmental disorders, by demonstrating gene dose effect on specific brain 265 

structures and effect on cognitive function. 266 

 267 
 268 
Introduction 269 

Inter-individual differences in brain structure are highly heritable1, but identifying the 270 

genes that contribute to brain development is challenging. Genome-wide association 271 

studies (GWAS) of brain anatomical structures indicate the influence of many single 272 
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nucleotide polymorphisms (SNPs) with small effect sizes2, 3, but the links to brain 273 

function remain weak. Evidence is emerging that some rare copy number variants 274 

(CNVs) - i.e., regions of the genome that are either deleted or duplicated - are associated 275 

with both substantial brain size and shape differences; e.g., the 7q11.234, 5, 22q11.26, 7, 276 

15q11.28-11 and 16p11.2 proximal12-14 and distal CNVs15. Many of these CNVs also have 277 

wide-ranging phenotypic impact, including poorer cognitive abilities8, 16-18 and increased 278 

risk of neurological or neurodevelopmental disorders. The strong impact of these CNVs 279 

on brain structure and behavior make them valuable for studies of the molecular 280 

mechanisms contributing to aberrant human neurodevelopment.  281 

The 1q21.1 distal CNV has a known large effect on head circumference, as evident from 282 

a high prevalence of micro- and macrocephaly in deletion and duplication carriers, 283 

respectively19-21. This, along with its position in a region that is rich in genes unique to 284 

the human lineage (i.e.absent in primates)22, 23, makes the 1q21.1 distal CNV particularly 285 

interesting for the study of aberrations in human brain structure. However, its relatively 286 

low frequency, 1 in ~3,400, (deletions) and 1 in 2,100 (duplications)8, 16, has hampered 287 

the study of its effects on brain structure. 288 

1q21.1 distal deletion and duplication carriers are both at higher risk for several 289 

neurodevelopmental disorders including schizophrenia24, intellectual disability (ID), 290 

developmental delay (DD), speech problems, autism spectrum disorders (ASD),  motor 291 

impairment19, 25-27 and epilepsy25, 28, in addition to separate risk for the duplication 292 

carriers for ADHD29, bipolar disorder and major depression30, 31. Further, general 293 

cognitive ability (IQ) was lower in carriers in a small clinical study19 and in the UK 294 

biobank32. In addition, 1q21.1 distal CNVs display a positive dose response on head 295 

circumference19-21, height and weight33, 34 and are associated with various somatic 296 
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diseases and traits including bone and muscle deviations33 and cataract35 (deletion only), 297 

diabetes35 (duplication only) and heart disease35-38 (both).  Conversely, several studies 298 

report carriers without any clinically evident phenotypes19, 37 and considerable 299 

heterogeneity39, 40, suggesting incomplete penetrance and variable expressivity.  The 300 

Df(h1q21) +/- mouse, deleted in the syntenic 1q21.1 distal region, displays some 301 

phenotypes similar to human CNV carriers, including reduced head-to-tail-length and 302 

altered dopamine transmission in response to psychostimulants, as seen in people with 303 

schizophrenia41.    304 

The 1q21 region in humans is rich in low copy number repeats20, 42 and contains several 305 

recurrent CNVs with differing breakpoints21, 36. Thus, gene estimates vary, but the core 306 

interval encompasses at least twelve protein-coding genes including several human-307 

specific genes such as HYDIN221, 36, NOTCH2NLs22, 23 and the DUF1220/Olduvain 308 

domain containing NBPF-encoding genes43-45 – the two latter were recently shown to 309 

have evolved as a two-gene unit46. Particularly interesting in the context of brain 310 

development are the recently characterized NOTCH2NL genes, absent in human’s closest 311 

living relatives and shown to prolong cortical neurogenesis22, 23.    312 

 313 

Despite the strong effects on neurodevelopmental traits and disorders, the impact of the 314 

1q21.1 CNVs on human brain structure is largely unknown. Here, we present the first 315 

large-scale systematic neuroimaging study of 1q21.1 distal CNV carriers, investigating 316 

brain structure in more than 37,000 individuals including 28 deletion and 22 duplication 317 

carriers. We mapped the effect of the 1q21.1 distal CNV on subcortical volumes, 318 

intracranial volume (ICV) and global and regional measures of mean cortical thickness 319 

and surface area. We investigated variation in cognitive task performance and 320 

supplemented with exploratory mediation analysis of the brain on cognition in the UK 321 
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Biobank. Given prior findings19-21, 47, we explored a dose-dependent effect of copy 322 

number on brain structures and decreased cognitive performance for both 1q21.1 distal 323 

deletion and duplication carriers in comparison to non-carriers.  324 

Materials and Methods 325 

Sample description 326 

The brain structural sample comprises a total of 39 cohorts with genotyping and MRI 327 

imaging data – 38 from the ENIGMA-CNV consortium in addition to a subsample of the 328 

UK Biobank48 (project ID number #27412). Demographic characteristics for each cohort 329 

is described in Supplementary Table 1 with a reference to participants’ collection and 330 

data sets including individual inclusion and exclusion parameters. Extended information 331 

on diagnosis and family information can be found in Supplementary Note 1 and age 332 

distribution of the cohorts in Supplementary Figure 1. All participants gave written 333 

informed consent and sites involved obtained ethical approvals. The main 1q21.1 distal 334 

sample consisted of 28 deletion carriers, 22 duplication carriers and 37,088 non-carriers 335 

(Table 1) from 13 different datasets and 15 scanner sites with various ascertainments 336 

(family, clinical and population studies, case-control study for psychiatric disease) 337 

collected up until Sep 30, 2019. Non-carriers were defined as having no CNVs known to 338 

cause neurodevelopmental diseases (as defined in Supplementary Table 2). In the meta-339 

analysis, an independent Icelandic sample from deCODE Genetics consisting of two 340 

deletion carriers and five duplication carriers in addition to 1150 non-carriers was added.  341 

 342 

Genotyping and QC 343 

The genotypes were obtained by genotyping with commercially available platforms, 344 

performed at participating sites for each cohort (Supplementary Table 1). Individuals 345 

were excluded exclusively based on quality control (QC) parameters from the CNV 346 
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calling. No exclusion was done due to ancestry in the primary analysis but the effect of 347 

ancestry was evaluated in a separate analysis (see below).  348 

 349 

CNV calls and validation in the core ENIGMA-CNV sample 350 

Almost all cohorts had CNVs called and identified in a unified manner as described 351 

previously15. In brief, CNVs were called using PennCNV49 and appropriate population 352 

frequency (PFB)-files and GC (content)-model files (Supplementary Table 3) (See 353 

Supplementary Notes 2 and 3). Samples were filtered and CNVs identified based on 354 

standardized quality control metrics15 (Supplementary Notes 2 and 3). The 1q21.1 distal 355 

region was well-covered by all arrays (Supplementary Figure 2). CNVs overlapping the 356 

region of interest (1q21.1 distal and 1q21.1 distal and proximal) were identified with the 357 

R package iPsychCNV, visualized and manually inspected.  358 

Image acquisition and processing 359 

All brain measures were obtained from structural T1-weighted MRI data collected at 360 

participating sites around the world and analyzed with the standardized image analysis, 361 

FreeSurfer, quality assurance and statistical methods as per the harmonized neuroimaging 362 

protocols developed within ENIGMA23 and ENIGMA3 363 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/). Further detail on data 364 

processing is provided in Supplementary Note 4. Details on study, scanner, vendor, field 365 

strength, sequence, acquisition parameters and FreeSurfer versions used are outlined in 366 

Supplementary Table 4. 367 

Statistical Analysis 368 

Imaging data processing and CNV calling were performed locally and de-identified CNV 369 

and imaging data were provided for a central mega-analysis. One of a pair of duplicates 370 

was kept. Relatives were removed from the sample used for the main analysis. In 371 
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addition, we conducted a number of sensitivity analyses to test the robustness of the 372 

results (Supplementary Note 5, Supplementary Tables 5, 6, 7 and 8). Individuals with a 373 

minimum overlap of 0.4 to regions with known pathogenic CNVs (Supplementary Table 374 

2) were excluded from the analysis regardless of copy number status as were individuals 375 

from scanner sites without 1q21.1 distal CNV carriers.  376 

 377 

Brain measures were normalized in R v3.3.2 by an inverse normal transformation of the 378 

residual of a linear regression on the phenotype correcting for covariates as done 379 

previously15. For the primary analysis, covariates were age, age2, sex, scanner site and 380 

ICV. In the analysis of ICV, ICV was not included as a covariate. These final covariance-381 

corrected values were used in downstream analysis and are reported for each measure.  382 

For comparison between groups, normalization was carried out including only the groups 383 

addressed (deletion and non-carriers, duplications and non-carriers) except for the 384 

deletion versus duplication comparison, where values from normalization of the entire 385 

dataset was used due to the low numbers. 386 

 387 

For the copy number dosage effect analysis (i.e. the effect on brain structure of 1q21.1 388 

distal copy number variation), a linear regression on the copy number status of the 389 

individuals (deletion=1, normal=2, duplication=3) was performed using the following 390 

model: covariance-corrected, normalized brain measure ~ copy number (deletion=1, non-391 

carrier=2, duplication=3). For comparison between groups, a two sample two-sided t-test 392 

assuming equal variance in all carrier/non-carrier groups was employed (R v3.3.2) where 393 

deletion or duplication carriers were compared either to each other or to non-carriers. To 394 

correct for the multiple comparisons, we calculated the number of independent outcome 395 

measures through spectral decomposition of a correlation matrix using MatSpDlite 396 
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(https://neurogenetics.qimrberghofer.edu.au/matSpDlite/) of the three global, seven 397 

subcortical and 68 regional cortical measures. Based on the ratio of observed eigenvalue 398 

variance to its theoretical maximum, the estimated equivalent of independent measures 399 

was 36. Thus, we set the significance threshold at α=0.05/36=0.0014. We report the 400 

uncorrected p-values throughout the manuscript.  401 

Effect size is calculated as the absolute effect size (the difference in mean between the 402 

two copy number groups in the t-test – which, in this case, equals Cohen’s d as the 403 

standard deviation of the normalized brain measures is one) and the estimate of beta in 404 

the linear regression.  Plots were generated using R library ggplot2 v2.2.150. Regional 405 

cortical visualisation was done with the R package ggseg v1.5.1. 406 

In a novel analysis, the independent Icelandic data was processed and analyzed as the 407 

main dataset. We meta-analyzed the results using the R package metafor v2.0.0, as 408 

previously15. 409 

 410 

Cognitive task performance data 411 

We downloaded behavioral performance measures on seven cognitive tests (the pairs 412 

matching task, the reaction time task, reasoning and problem solving tests, the digit span 413 

test, the symbol digit substitution test and the trail making A and B tests) from the UK 414 

Biobank repository, performed by at least 10% of the participants. The results were 415 

processed following the general approach by Kendall et al16. For more details, see 416 

Supplementary Note 6. For the analysis of the seven cognitive measures, we set the 417 

significance threshold to α=.05/7=.007. 418 

 419 

Mediation analysis 420 
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Mediation analyses were done with the R package mediation v4.4.7. Brain measures were 421 

normalized as described above and cognitive tasks were corrected for age, age2 and sex 422 

prior to input into the analysis. We report the proportion of the total effect of the CNV on 423 

cognitive task performance mediated by the brain measures (“path ab“/“path c”), with p-424 

values calculated through quasi-Bayesian approximation using 5000 simulations. We set 425 

the significance threshold at α=.05/((2+4)x6)=1.4 x 10-3 given the test of two structures 426 

for deletion and four for duplication carriers on six cognitive tests. The digit span test was 427 

excluded since no 1q21.1 CNV carriers had results from both this cognitive test and brain 428 

structural data.  429 

 430 

Data availability 431 

The authors declare that the data supporting the findings of this study are available within 432 

the paper and its supplementary information files. The data was gathered from various 433 

resources, and material requests will need to be placed with individual PIs. I.E.S. can 434 

provide additional detail upon correspondence. Data from PING is available at NIMH 435 

Data Archive: https://ndar.nih.gov/edit_collection.html?id=2607 436 

 437 

Results 438 

Sample characteristics 439 

The main 1q21.1 distal (146.5-147.4Mb, hg19) brain structural dataset consisted of 28 440 

deletion and 22 duplication carriers and 37,088 non-carriers (derived from the same 441 

scanner sites as the CNV carriers) from ENIGMA-CNV and UK biobank (Table 1, 442 

separate demographics in Supplementary Table 9). The age of CNV carriers was lower 443 

(41.7±19.0 (deletions), 55.4±12.7 (duplications), respectively) than that of non-carriers 444 

(61.1±12.1) (Table 1). Eleven deletion carriers and seven duplication carriers had a 445 
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known neurological, neurodevelopmental or psychiatric diagnosis or had been recruited 446 

in a clinical CNV study.  The remaining carriers either did not have an established 447 

diagnosis or were recruited in studies from which diagnostic information was unavailable 448 

(Table 1, Supplementary Table 10). Of the 37,088 non-carriers, 6.5 % (2,425) had an 449 

established neurological, neurodevelopmental or psychiatric disorder.  450 

 451 

1q21.1 distal CNV associated with global cortical surface structures 452 

For our main dataset, there was a significant positive association between the number of 453 

1q21.1 distal copies and ICV (β = 1.47, P = 2.8 x 10-25) as well as cortical surface area (β 454 

= 0.81, P = 1.1 x 10-8) (Figure 1, Supplementary Table 5) at a significance threshold of 455 

P<0.0014 after correction for age, age2, sex, scanner site and ICV. In contrast, a 456 

significant negative copy number dosage effect was identified for the caudate (β = -0.49, 457 

P = 6.9 x 10-4) and hippocampal volumes (β = -0.56, P = 1.3 x 10-4) T-tests indicated a 458 

decrease in ICV (Cohen’s D = -1.84 (-17%), P = 1.6 x 10-22) for deletion carriers and an 459 

increase for duplication carriers (Cohen’s D = 0.90 (+10%), P = 2.3 x 10-5), respectively, 460 

compared to non-carriers (Supplementary Table 6). For a raw value plot of ICV, see 461 

Supplementary Figure 3. The cortical surface area dosage effect was primarily driven by 462 

the deletion carriers with a significantly lower total cortical surface area (Cohen’s D = -463 

1.13 (-23%), P = 2.1 x 10-9) and the dosage effect on caudate and hippocampus was 464 

primarily driven by duplication carriers with significantly smaller caudate (Cohen’s D = -465 

0.71 (-16%), P = 0.0012) and hippocampal (Cohen’s D = -0.92 (-15%), P = 4.1 x 10-5) 466 

volumes than non-carriers (Figure 1, Supplementary Table 7). Adding an independent 467 

Icelandic dataset with two deletion, five duplication and 1150 non-carriers (Table 1) in a 468 

meta-analysis strengthened the majority of the dosage results (Supplementary Figure 4, 469 
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Supplementary Tables 11 and 12) and revealed additional significant between-group 470 

differences in nucleus accumbens, caudate and putamen (Supplementary Table 12).  471 

A number of sensitivity analyses was run on the main dataset, namely:  472 

a) Matching each carrier with one non-carrier for age, sex, scanner site and ICV or 473 

age, sex, scanner site;  474 

b) including only: i) non-affected individuals (i.e. excluding individuals with a 475 

known neurodevelopmental or neurological disorder diagnosis; ii) adults 476 

(age>=18); iii) non-affected adults; iv) children (age<18); v) ENIGMA-CNV or 477 

vi) UK biobank; 478 

c) controlling for ancestry; 479 

d) excluding ICV as a covariate or;  480 

e) including first and second-degree relatives (see Supplementary Note 5 for 481 

methods).  482 

These analyses validated the overall effects (Supplementary Tables 5 and 6).  483 

The 1q21.1 distal CNV is associated with regional brain structures 484 

The largest dosage effects for regional cortical surface area were found in the frontal 485 

lobes followed by the cingulate cortex - with additional significant effects in three 486 

regions of the parietal and temporal lobes (Figure 2, Supplementary Table 7). Likewise, 487 

through t-tests, the largest effects in both deletion and duplication carriers in comparison 488 

to non-carriers were observed in the frontal and cingulate cortices (Figure 3, , 489 

Supplementary Table 8).  490 

 491 

For regional cortical mean thickness, we identified significant negative dosage effects in 492 

the superior temporal region and significant positive dosage effects for the pericalcarine 493 

region (Figure 2, Supplementary Tables 7 and 8). Similarly, significant increases in mean 494 
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cortical thickness were observed in deletion carriers versus non-carriers in the 495 

parstriangularis and superior temporal regions and a significant decrease in the 496 

pericalcarine region (Figure 2, Supplementary Table 8). All regional results were 497 

corrected for age, age2, sex, scanner site and ICV. Sensitivity analyses similar to those 498 

performed for subcortical regions confirmed the robustness of the results (Supplementary 499 

Tables 7 and 8). 500 

 501 

1q21.1 distal CNV associated with cognitive performance and mediation by brain 502 

structures 503 

Deletion and duplication carriers had different cognitive profiles in comparison to non-504 

carriers when testing for association in seven different neuropsychological tests available 505 

from the full UK biobank sample: Deletion carriers had significantly poorer performance 506 

in three tests: symbol digit substitution, trail making B and pairs matching while 507 

duplication carriers had significantly poorer performance in two tests: reaction time and 508 

the reasoning and problem solving task  (Table 2).  509 

Testing the effect of brain structures on cognitive tests in UK biobank participants, larger 510 

ICV and total surface area were associated with better performance on almost all tests 511 

(Table 3, see Supplementary Table 13 for sample size details). A larger hippocampus was 512 

associated with better performance for symbol digit substitution, trail making A and B 513 

(Table 3) and a larger caudate was associated with higher performance on trail making A 514 

(Table 3).   515 

Next, we tested whether the brain structures significantly associated with 1q21.1 distal 516 

CNV carriers might mediate the effect of the CNV on cognition. For two of the three 517 

tests associated with deletion carrier status, there were significant mediation effects 518 

(significance threshold 1.4 x 10-3):  Cortical surface area and ICV accounted for 5% and 519 
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10%, respectively, of the poorer performance of deletion carriers on symbol digit 520 

substitution, and 7% and 17%, respectively, of their poorer performance on the trail 521 

making B test (Table 3).  522 

 523 

Discussion 524 

Our main finding was a significant positive dosage effect in humans of 1q21.1 distal copy 525 

number on ICV and cortical surface area, with the largest differences in frontal and 526 

cingulate cortical surface area. We also identified a significant negative dosage effect on 527 

caudate and hippocampal volumes. A number of sensitivity analyses confirmed the 528 

robustness of the results. Both 1q21.1 distal deletion and duplication carriers showed 529 

poorer cognitive performance, although on different tests, with an indication that 530 

decreased ICV/cortical surface area might mediate the effect in deletion carriers.  531 

The 1q21.1 distal CNV causes copy dosage effect on brain structures. 532 

We found a strong effect of the 1q21.1 distal CNV on total cortical surface area while no 533 

overall effect on mean cortical thickness was observed. A specific increase in size of the 534 

cortical surface area with little effect on cortical thickness is observed throughout 535 

mammalian evolution including the primate lineage leading to humans51. This possibly 536 

reflects that cortical thickness and surface area appear to be driven by distinct genetic 537 

processes52. This pattern may be the result of an increased number of symmetric or self-538 

renewing cell-division cycles, leading to an expansion of the neural progenitor pool and 539 

subsequently to an increase in the number of cortical neurons - in line with the radial unit 540 

hypothesis51.  Interestingly, although not significant, mean cortical thickness tended to 541 

decrease in deletion carriers in the frontal cortical surface areas with the highest effect 542 

sizes, resembling a pattern found in lissencephaly53. This could suggest that large 543 
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regional decreases in cortical surface area correlate inversely with mean cortical 544 

thickness.  545 

The biomechanical forces of brain growth are thought to form the expansion of the 546 

cranium so that the skull grows in harmony with the expanding brain54. Thus, the positive 547 

copy number dosage effect on cortical surface area may directly trigger the effect on head 548 

circumference19-21 and ICV of 1q21.1 distal carriers due to modifications in pressure. 549 

Altered mechanical pressure might also cause the negative copy number dosage effect on 550 

hippocampus and caudate volumes, effects on subcortical volumes also observed in a UK 551 

biobank exploratory study on six individuals with a 1q21.1 distal duplication 55.  552 

 553 

Human-specific genes may affect the cortical surface area and cross-species effects 554 

The positive copy number dosage effect on brain structure with the same direction as for 555 

weight and height33, 34 likely results from altered gene expression as observed in 1q21.1 556 

distal CNV cell lines47. In an independent experiment on fetal tissue, we also observed a  557 

dynamic expression patterns of the genes in the 1q21.1 interval consistent with potential 558 

roles in cortical neurogenesis and development (Supplementary Note 7, Supplementary 559 

Figures 5 & 6). Genome-wide association studies (GWAS) based on the hg19 genome 560 

assembly have not identified hits in the 1q21.1 genomic region for ICV56, total cortical or 561 

regional surface area52, 57. Assembly of the 1q21.1 region58 and thus gene discovery is 562 

complicated due to the presence of numerous low copy number repeats20, 42 and has been 563 

faulty until the GRCh38 genome assembly. This may explain the lack of GWAS hits in 564 

the region. 565 

Candidates for a dosage-dependent amplifier of the CNV-associated brain phenotypes are 566 

the recently identified human-specific NOTCH2NL genes that confer delayed neuronal 567 

differentiation and increased progenitor self-renewal22, 23 -  in line with the radial unit 568 



 22

hypothesis51. The areas with the highest regional effect sizes overlap with the areas of the 569 

highest expression of NOTCH2NLA and C in utero22  in concordancw ith n early 570 

developmental effect such as the macrocephaly observed in utero in a 1q21.1 distal 571 

duplication carrier37. Our observations of a 2 % reduced skull diameter in the 1q21.1 572 

deletion mouse (Supplementary Figure 7, Supplementary Notes 8 and 9) and recent 573 

findings of decreased total brain volume focused on the temporo-parietal and subcortical 574 

areas in the deletion mouse59, suggests that genes overlapping between human and mice 575 

(nine of ten mice genes are syntenic to the human region41), and not specific to humans 576 

are also involved in the altered skull and brain morphology. However, although diameter 577 

and volume are not directly comparable, the 17% decrease in ICV in human 1q21.1 578 

deletion carriers would still point towards a substantial role of human-specific genes or 579 

genes with altered functions in comparison to mice. This underlines the need for 580 

additional data to disentangle which specific genes are involved in the skull and brain 581 

structural phenotypes. Of note, we also observed shorter bones overall in the 1q21.1 582 

deletion mice (Supplementary Figure 7, Supplementary Note 9) expanding on previous 583 

head-tail length data 41 and lower bone mineral density in female mice (Supplementary 584 

Figure 8, Supplementary Note 9) which mirror bone characteristics from human deletion 585 

carriers33 increasing the number of observed cross-species effects between the 1q21.1 586 

mice and human 1q21.1 deletion carriers.  587 

1q21.1 distal CNV deletion and duplication carriers show deficits in different 588 

cognitive functions. 589 

Our findings of widespread lower performance across several tests in different domains 590 

for both carrier groups in the volunteer-based UK Biobank sample are in line with 591 

cognitive results from a recent study32 and support that cognitive function in CNV 592 

carriers largely without a neurodevelopmental diagnosis may still be compromised 8, 16. 593 
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Interestingly, the frontal and cingulate regions60, with the greatest cortical effect sizes for 594 

1q21.1 distal correlate particularly with cognitive function and have gone through the 595 

greatest expansion during human development and evolution 61.  Our analyses indicated 596 

that the decreases in cognitive task performance are partially mediated by the observed 597 

differences in ICV and cortical surface area, reflecting the positive correlation between 598 

brain volume and intellectual function in line with previous findings62. The decrease in 599 

performance for several cognitive tasks in duplication carriers despite a larger ICV and 600 

cortical surface area suggests that the positive correlations may only be applicable within 601 

a certain narrower range. Interestingly, recent genetic analysis of NOTCH2NL in archaic 602 

and modern humans revealed ongoing adaptive evolution towards a lower dosage of the 603 

protein63 suggesting negative effects of too much NOTCH2NL protein.  604 

Our brain structural findings in 1q21.1 distal CNV carriers overlap with brain alterations 605 

in associated disorders: e.g. ADHD64, ASD65 schizophrenia66, bipolar disorder67, major 606 

depressive disorder68 and subtypes of epilepsy69 but the exact overlaps differ between 607 

carrier groups. Of note, 1q21.1 distal deletion and duplication carriers display direct, 608 

opposite effects on several brain structures while at risk for the same neurodevelopmental 609 

diseases. Other pathogenic CNVs also display overlapping disease risk and similar 610 

opposite copy number effects6, 8-15  including effects on cortical surface area in 22q11 and 611 

16p11.2 proximal CNV carriers6, 12-14.  These CNVs impact different genes but may 612 

converge on the same downstream pathways altering cortical surface area formation, 613 

similar to what has been reported for behavioral and neurocognitive phenotypes27. 614 

This also suggests that other risk factors interplay to cause disease. It also supports that 615 

subgroups within neurodevelopmental disorders can be defined based on genetic profile 616 

and brain structural differences.  617 

 618 
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We demonstrate large effects of 1q21.1 distal CNVs on brain structure and cognition in 619 

humans and recapitulation of the smaller head size and other skeletal characteristics in 620 

1q21.1 deletion mice.  These findings provide insight into molecular mechanisms 621 

involved in critical stages of human brain development and mapping of gene dosages to 622 

brain structural fingerprints.  623 

 624 
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Table 3: Mediation analysis of brain structures over the association between 1q21.1 
distal CNV carrier status and performance in the cognitive tasks in the UK Biobank. 
Path B is the effect of the brain structure on cognition overall including all 1q21.1 deletion 
and duplication carriers (4-13 CNV carriers in each group) and non-carriers (n= 10,501- 
30,924; for exact numbers, see Supplementary Table 13). Each calculation included 5000 
simulations. 

  

Path B - effect of brain 

structure on cognition DELETION DUPLICATION 

  Estimate (SE) P 
Prop. 

mediated P 
Prop. 

mediated P 
Pairs matching      

Caudate 0.0023 (0.0053) 0.66   3.5E-03 0.85 

Hippocampus 0.005 (0.0052) 0.34   9.8E-03 0.68 

SurfArea 0.031 (0.0055) 1.9E-08 -0.07 0.65 -4.4E-03 0.9 

ICV 0.027 (0.0054) 4.3E-07 -0.12 0.64 -0.07 0.51 

Reaction Time      

Caudate -0.0016 (0.0054) 0.77   -2.3E-03 0.67 

Hippocampus 0.01 (0.0053) 0.053   0.01 0.04 
SurfArea -0.0095 (0.0056) 0.091 0.02 0.13 7.3E-04 0.78 

ICV 0.029 (0.0055) 2.4E-07 -0.1 0.07 -0.03 2.4E-03 
Reasoning and problem solving      

Caudate -0.0059 (0.0091) 0.51   5.7E-03 0.55 

Hippocampus 0.0031 (0.0089) 0.73   -9.6E-05 0.95 

SurfArea 0.052 (0.0094) 2.6E-08 0.06 0.250 -7.4E-04 0.97 

ICV 0.15 (0.0092) 3.7E-59 0.25 0.24 0.18 0.04 
Symbol digit substitution      

Caudate 0.0011 (0.0077) 0.88   -4.2E-03 0.83 

Hippocampus 0.04 (0.0075) 6.5E-08   -0.01 0.82 

SurfArea 0.055 (0.0079) 3.8E-12 0.05 2.4E-03 6.9E-04 0.99 

ICV 0.066 (0.0079) 3.6E-17 0.1 4.0E-04 0.13 0.68 

Trail Making A      

Caudate 0.034 (0.0084) 5.7E-05   4.4E-04 1 

Hippocampus 0.04 (0.0081) 1.0E-06   3.0E-03 0.97 

SurfArea 0.046 (0.0086) 1.1E-07 0.09 0.19 1.1E-03 0.98 

ICV 0.059 (0.0085) 6.1E-12 0.21 0.20 -0.01 0.99 

Trail Making B      

Caudate 0.021 (0.0083) 0.012   -0.01 0.79 

Hippocampus 0.04 (0.008) 6.9E-07   -0.01 0.86 

SurfArea 0.082 (0.0085) 6.4E-22 0.07 8.0E-04 8.9E-03 0.92 

ICV 0.11 (0.0084) 1.2E-36 0.17 1.2E-03 0.16 0.73 
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Figure legends 
 
Figure 1: Cortical surface area and ICV show a positive dosage effect and caudate and 

hippocampus a negative dosage effect to copy number in the 1q21.1 distal region in our 

main sample (ENIGMA-CNV and UK biobank). Boxplots of subcortical volumes, cortical 

surface area and mean cortical thickness and ICV are shown. Deletion carriers (del) in red, non-

carriers (nc) in grey and duplication carriers (dup) in blue, respectively. The normalized brain 

values are presented. Boxplots represent the mean. Copy number dosage effect is noted at the 

bottom of each panel. Significant differences after correction between groups are noted as * = P < 

0.0014, ** = P < 0.00014, *** = 0.000014. Centre line represents median, box limits are the 

upper and lower 25 % quartiles, whiskers the 1.5 interquartile range and the points are the 

outliers. All analyses were corrected for age, age squared, sex, scanner site and ICV (except for 

ICV). 

 

Figure 2. Results from the t-tests and linear regression of 1q21.1 copy number variation on 

regional cortical surface area and cortical thickness. 1st and 3rd rows: Effect sizes (Cohen’s d 

for the t-tests, beta coefficient for the dosage/linear regression). 2nd and 4th rows: Statistical 

significance in –log10 of the p-value. Significant areas in rows 1 and 3 are marked with black 

lines with increasing thickness for increasing significance (P<0.0014). The column names 

indicate the comparisons with del=deletion carriers, nc=non-carriers, dup=duplication carriers.  

All measures were corrected for age, age2, sex, scanner site and ICV. 
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Supplementary Figures and Notes for:  “1q21.1 distal copy number variants are 

associated with cerebral and cognitive alterations in humans” 

 

Overview, Supplementary Figures (pages 3-12): 

Supplementary Figure 1: Age distribution per cohort contributing data to the current 

study, with age in years on the y-axis and cohort name on the x-axis.  

Supplementary Figure 2: Coverage of the 1q21.1 distal region by genotyping 

platforms in ENIGMA-CNV. 

Supplementary Figure 3: Bivariate plot of age (years) versus uncorrected ICV 

(mm3). 

Supplementary Figure 4. Forest plots on the dosage effect of copy number on 

subcortical volumes, surface area, thickness and ICV.  

Supplementary Figure 5: Expression peak of the genes encoded in the 1q21.1 

interval during human fetal corticogenesis. 

Supplementary Figure 6: RNA-seq profile of genes in the 1q21.1 interval during 

human corticogenesis. 

Supplementary Figure 7: Skull diameter in 1q21.1 deletion knockout mice in 

comparison to wildtype (WT) littermates.  

Supplementary Figure 8: Body weight and bone size of 1q21.1 deletion mice in 

comparison to wildtype (WT) littermates. 

Supplementary Figure 9: Bone mass measurements in 1q21.1 mice and wildtype 

(WT) litter mates. 

 

Overview, Supplementary Notes (pages 13-20): 



 

 2

Supplementary Note 1: Extended information on datasets. 

Supplementary Note 2: Details on CNV calling and QC. 

Supplementary Note 3: Extended information on UK biobank CNV calls. 

Supplementary Note 4: Extended info on image acquisition and processing. 

Supplementary Note 5: Description of additional sensitivity and robustness analyses.  

Supplementary Note 6: Details on cognitive task data processing 

Supplementary Note 7: Details on human fetal transcriptional data 

Supplementary Note 8: Df(h1q21)+/- mouse characterization 

Supplementary Note 9: Results on the 1q21.1 distal deletion mouse 

 

Overview, Supplementary tables, legends (pages 21-26): 

(NOTE – this is ONLY legends - please refer to separately submitted excel sheet 

for the entire tables) 
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SUPPLEMENTARY FIGURES: 

 

Supplementary Figure 1: Age distribution per cohort contributing data to the 

current study, with age in years on the y-axis and cohort name on the x-axis.  
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Supplementary Figure 2: Coverage of the 1q21.1 distal region by genotyping 

platforms in ENIGMA-CNV. Log R ratio is shown in red, B-allele frequency in 

blue. The vertical black lines delimit the boundaries of the 1q21.1 distal region. 

HumanHap550, HumanOmniQuad1-Quad, HumanOmni2.5, HumanOmni5-4, 
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IlluminaHuman660-Quad, IlluminaOmniExpressExome are mock data. The rest is 

based on real data. 

 

Supplementary Figure 3: Bivariate plot of age (years) versus uncorrected ICV 

(mm3). Deletion carriers in red, non-carriers in grey and duplication carriers in blue, 

respectively. Circles = females, triangles = males. 

 



 

 6

Supplementary Figure 4. Forest plots on the dosage effect of copy number on 

subcortical volumes, surface area, thickness and ICV. The effect size (β of the 

linear regression) at each site for each measure is shown by the position on the x-axis. 

Standard error is shown by the horizontal line. A summary polygon shows the results 

when fitting a random-effects model to the two datasets: the main and the Icelandic 

deCODE samples. del, nc and dup denote the number of individuals in each analysis. 

This number changes on the basis of quality control for each structure. * = P < 

0.0014, ** = P < 0.00014. Effect size and confidence intervals are to the right.  
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Supplementary Figure 5: Expression peak of the genes encoded in the 1q21.1 

interval during human fetal corticogenesis. The highest expression value for each 

gene in the developmental stages from GW7 to GW21 is indicated. The genes are 

ordered according to their chromosomal positions. cFPKM = corrected Fragment Per 

Kilobase and Million reads.
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Supplementary Figure 7: Skull diameter in 1q21.1 deletion knockout mice in 

comparison to wildtype (WT) littermates. A. Median skull diameter (n=10-12 per 

group). The horizontal lines demark P-values as group-wise comparisons (non-

parametric Mann-Whitney U test) between the genotype groups. B. X-ray showing 

the mouse skull with the green line indicating how the skull diameter was determined. 

 

Supplementary Figure 8: Body weight and bone size of 1q21.1 deletion mice in 
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comparison to wildtype (WT) littermates. A. Median body weight. B. Tibial (lower 

leg) length measured on X-rays. P-values show group-wise comparisons (non-

parametric Mann-Whitney U test) between the genotype groups (n=10-12 in each 

group). 
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Supplementary Figure 9: Bone mass measurements in 1q21.1 mice and wildtype 

(WT) litter mates. Median bone mineral density (BMD) in femur (upper leg) (A) and 

whole body (D). Median bone mineral content (BMC) in femur (B) and whole body 

(E). Bone area in femur (C) and whole body (F). P-values show group-wise 

comparisons (non-parametric Mann-Whitney U test) between the genotype groups. 
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SUPPLEMENTARY NOTES 

 

Supplementary Note 1: Extended information on datasets and test for 

differences in demographics. 

Diagnosis-information in ENIGMA-CNV was based on information from the 

different datasets. In the UK biobank, diagnosis was extracted as Datafield 41202: 

Diagnoses - main ICD10 and 41204 Diagnoses - secondary ICD10. If either of these 

contained an F (mental) or G (neurological) disorder, these were coded as affected 

and the ICD10 disorder was noted. 

For the core ENIGMA-CNV dataset, family information was based on pi-hat 

estimated for pairs of individuals, and only one relative (if more than two) from pairs 

with pi-hat >0.2 was kept. CNV carriers were selectedly kept over non-carriers. For 

ECHO_DEFINE and the 16p11.2 European Consortium, relatedness was based on 

information from the clinican. For the UK biobank, relatives were extracted from 

Datafield 22011: Genetic relatedness pairing and Datafield 22012: Genetic 

relatedness factor. One of each pair with a kinship coefficient above 0.053 (that is 

more related than 1st cousins) was removed.   

Tests for differences between groups for demographic data applied a test included in 

the R package tableone v0.7.3 – chi square test with continuity correction for 

categorical values and ANOVA for continuous variables.  

Supplementary Note 2: Details on CNV calling and QC. All PFB-files were based 

on Human Genome Build NCBI36/hg18 except for UK biobank, ECHO-DEFINE and 

parts of 16p11.2 European Consortium that used NCBI37/hg19. PFB-and GC-files 

were selected based on publicly available data from the PennCNV homepage or self-

generated: in the case of cohorts primarily consisting of Asian and African 
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individuals, a PFB-file was generated through PennCNV compile_pfb.pl using all 

genotyping arrays from the cohort. The PFB-file used is noted in Supplementary 

Table 10.   

The following quality control metrics were used: Adjacent CNVs separated by a gap 

less than 20% of the combined length of the two CNVs were merged until no more 

gaps of <20% existed, and CNVs based on less than 15 SNPs were excluded.  Only 

samples with standard deviation (SD) of normalized intensity (LRR) <0.35, B allele 

frequency (BAF) drifting value <0.01 and wave factor value between -0.05 and 0.05 

were included.  

The 1q21.1 distal region was well-covered by all arrays (Figure S8). CNVs 

overlapping the region of interest (1q21.1 distal and 1q21.1 distal and proximal) were 

identified with the R package iPsychCNV SelectSamplesFromROI with parameters 

OverlapMin = 0.4 and OverlapMax = 5, visualized with iPsychCNV StackPlot and 

manually inspected. None of the 1q21.1 distal carriers carried additional genomic 

imbalances (Supplementary Table 1) except for three duplications that extended into 

the 1q21.1 proximal region (Supplementary Table 2), a known susceptibility factor 

for thrombocytopenia-absent radius (TAR) syndrome1. In the statistical analysis, 

individuals with a minimum overlap of 0.4 to regions with known pathogenic CNVs 

(Table S10) were excluded regardless of copy number status as were individuals from 

scanner sites without 1q21.1 distal CNV carriers. 

Carriers in the 16p11.2 European consortium cohort were identified based on report 

from the cytogeneticist who did the genetic test in the clinic and was thus based on 

either CGH array or FISH (Fluorescent In Situ Hybridization) - the identification 

method for each individual carrier is noted in Supplementary Table 2. Non-carriers in 
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the 16p11.2 European consortium cohort were either selected from the general 

population (excluding individuals with a neurodevelopmental or psychiatric 

diagnosis) or familiar controls who tested negative for the 1q21.1 distal and proximal 

CNV or familial controls from a 16p11.2 proximal and distal CNV study - five of the 

latter had a neuropsychiatric diagnosis. Carriers in the ECHO_DEFINE were 

identified based on the report from the cytogenetist after genetic test in the clinic with 

Psych Chip.   

 

Supplementary Note 3: Extended information on UK biobank CNV calls.  

Anonymised genotyped data was downloaded as l2r & baf-files from UK biobank 

showcase for chromosomes 1-22, X, Y, M & XY. In addition, snp-files were 

downloaded. They were stored and processed on a secure Unix server.  

For the initial steps, the l2r- and baf-files were split into separate files for each 

individual containing both l2r and baf-values in 20 batches, each containing 25,000 

individuals per batch [the last batch contained 13,377). Subsequently, SNP-names 

were added to the files. CNVs were called in subbatches of 1000 individuals per batch 

using PennCNV 57 and self-generated PFB- and GCC-model files (NCBI37/hg19) and 

affygw6.hmm. Subsequent filtering and visualization was done as for the main dataset 

above except that the LRR_SD cut-off was set at 0.50 given that we observed reliable 

CNV calls within these ranges. We did not filter based on number of CNVs or 

genotype call rate. These are quite relaxed filtering criteria but since all 1q21.1 CNVs 

were visualized and inspected and thus filtered for false positives, we did not apply 

more stringent parameters. 59 individuals were excluded from the entire UK biobank 

using these criteria.  
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Supplementary Note 4: Extended info on image acquisition and processing. Each 

site contributed volumes for the left and right hemispheres of the accumbens, caudate, 

putamen, pallidum, amygdala, hippocampus and thalamus in addition to right and left 

34 regional cortical surface areas and 34 cortical average thicknesses, total surface 

area and total mean cortical thickness as well as estimated intracranial volume (ICV). 

The total volume, surface area or mean thickness of each structure was calculated by 

adding the left and right together. We excluded each individual measure if it deviated 

more than +/- 4SD from the mean for each individual scanner site. 

 

Supplementary Note 5: Description of additional sensitivity and robustness 

analyses.  

We re-analysed the dataset in the following way: (a) MATCHED analysis: Matching 

each CNV carrier with one non-carrier. The R package Matchit v2.4 was used to 

match each CNV carrier with one non-carrier based on sex, age, scanner site and ICV. 

(b) NON-AFFECTED only analysis: Keeping only non-affected individuals (i.e. 

individuals without a known diagnosis of a brain disorder), (c) NON-AFFECTED 

ADULTS analysis: Keeping only  non-affected adults (age>=18) (d) ADULTS 

analysis: Only including adults with age>=18 (e) CHILDREN analysis: Only keeping 

children  with age<18,  or (f) ENIGMA-CNV ONLY: Keeping only ENIGMA-CNV 

derived individuals in analysis or (g) UK biobank ONLY: Keeping only UKB-derived 

participants or (h) POPULATION STRUCTURE analysis: Controlling for population 

structure by including 4 genetic principal components as covariates calculated based 

on standardized multidimensional scaling analyses of genome-wide genotype data 

conducted at each site (i) NO ICV model analysis: Excluding ICV as covariate or j) 
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(f) INCLUDING RELATIVES analysis: Including all relatives (first- or second-

degree relatives) that was removed in the primary analysis.  

 

Supplementary Note 6: Details on cognitive task data processing 

The Pairs Matching task (field 399), tested episodic memory, with six pairs of cards 

being shown for three seconds to participants, before being turned over, after which 

the participants were asked to identify the matching pairs. We used the total number 

of errors made. The Reaction Time task (field 20023), tested simple processing speed 

through twelve rounds of a game where participants had to click a button as quickly 

as possible when shown two matching cards. We used the mean reaction time. Fluid 

Intelligence (field 20016), tested reasoning and problem solving through thirteen 

verbal and numerical reasoning questions, which had to be answered within two 

minutes. We used the total number of correct answers. The Digit Span task (field 

4282) tested numeric working memory by presenting progressively longer numbers to 

participants and asking them to recall these once the number had disappeared. We 

used the maximum number of digits correctly recalled. The Symbol Digit Substitution 

task (field 20195) tested complex processing speed through the matching of numbers 

to a set of symbols. We used the number of correct substitutions. The Trail Making A 

and B tasks (fields 20156 and 20157) tested visual attention by asking participants to 

connect scattered circles according to numbers (trail A) and to alternating numbers 

and letters (trail B). We used the time taken to complete these tests for our analyses. 

All data was recoded so that higher scores indicate higher performance. 

Supplementary Note 7: Details on human fetal transcriptional data 

Human fetal tissue collection and preparation was done as described previously19 - 

human fetuses were obtained following medical pregnancy termination. Fetuses aged 
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7 gestational weeks (GW) (2 males), 9 GW (1 male, 1 undetermined), 12 GW (1 

female, 1 undetermined), 15 GW (1 male), and 21 GW (1 male) were used for the 

RNA sequencing and in situ hybridization of cortical tissue. All cases were examined 

with standard feto-pathological procedures and none displayed clinical or 

neuropathological evidence of brain malformation. The brain was removed within 6 

hours of expulsion and RNA extracted and cDNA prepared2. The 350-700bp size 

cDNA fraction was sequenced from both ends using Hiseq 2500 Rapid mode v3 

(Illumina). Transcriptome analysis was performed as previously described2. 

Expression values are calculated as the unit Fragment per kilobase and million reads 

(FPKM) and those for human-specific duplicated genes (NBPF10, NOTCH2NLA, 

HYDIN2, NBPF12, LOC728989, NBPF11, NBPF14, and NOTCH2NLB) are 

corrected on the basis of the computer simulation performed in the previous study 

(cFPKM; corrected FPKM)2. The study was approved by three relevant Ethics 

Committees (Erasme Hospital, Université Libre de Bruxelles, and Belgian National 

Fund for Scientific Research FRS/FNRS) on research involving human subjects. 

Written informed consent was given by the parents in each case. 

 

Supplementary Note 8: Df(h1q21)+/- mouse characterization 

16-week-old male and female heterozygous 1q21.1 deletion knockout mice3 and 

wildtype mice were sacrificed for bone analysis (n=10-12 in each genetic group). 

Body weight was recorded. Femur and tibia were collected and stored in ethanol at 4 

C and in saline at -20 C until further analysis. Animals were genotyped from Taconic 

(Ejby, Denmark) and genotyping was repeated on tail samples collected after 

sacrifice. Whole body DXA scans were obtained using a Piximus densitometer (GE 

Lunar, Madison, WI, USA). Whole-body and femoral bone mineral density (BMD), 
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bone mineral content and bone area were analysed. X-ray scans of the skull, upper 

limbs and lower limbs were obtained using a Faxitron MX-20 small animal x-ray 

system (Faxitron, Tucson, AZ, USA). Skull diameter, femur length and width, and 

humerus and tibia length were measured using the ruler function in a dicom viewer 

program. Measurements were done by staff blinded to genotype groups. 1q21 and 

wildtype mice were compared using non-parametric Mann-Whitney U test. To take 

variation in bone turnover between sexes into account, males and female mice (10-12 

mice in analytical group) were analyzed separately. Differences were considered 

significant at P<0.05. All animals were included in the analyses. 

 

Supplementary Note 9: Results on the the 1q21.1 deletion mouse 

In a comparison between 1q21.1 deletion mice (Df(h1q21) +/- mouse3)) and their 

wild-type littermates (n=10-12 mice per group), we found a significant decrease in 

skull diameter in the deletion mice (2% decrease, P=0.007 (females) and P=0.004 

(males)) (Figure 4). Also, the deletion mice displayed lower weight and shorter tibial 

(lower leg) length (P=0.01 (females), P = 0.023 (males)) (Supplementary Figure 4). 

Finally, bone mineral density (BMD), bone mineral content (BMC) and bone area 

were lower in female 1q21.1 deletion mice compared to wild-type littermates 

(P<0.0005 (BMD and BMC) and P=0.004 (area)) whereas male deletion mice - unlike 

the deletion females - displayed an increased femoral bone (upper leg) area (P=0.022; 

Supplementary Figure 5). 
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SUPPLEMENTARY TABLES LEGENDS: 

(NOTE – this is ONLY legends - please refer to separately submitted excel sheet 

for the entire tables) 

 

Supplementary Table 1: Specification of all cohorts in ENIGMA CNV. Study 

design, participant demographics, and references to articles containing descriptions of 

individual inclusion and exclusion parameters for all datasets in ENIGMA-CNV 

collected up until Sep 30 2019. Data sets contributing data to the 1q21.1 distal 

analysis are marked with a star.  

 

Supplementary Table 2: CNVs of Interest. Individuals with a minimum overlap of 

0.4 to these CNVs were excluded from the analysis. Coordinates are Human Genome 

Build NCBI36/hg18 and GRCh37/hg19. 

 

Supplementary Table 3: Chips and corresponding PFB-files used for PennCNV 

CNV calling. 

 

Supplementary Table 4: Technical details concerning scanners and acquisition 

parameters utilized at the participating ENIGMA-CNV scanner sites 

 

Supplementary Table 5: Sensitivity analyses – dosage effect of 1q21.1 distal copy 

number on subcortical volumes in the main sample.  The effect size (β of the linear 

regression) is presented with 95 % confidence intervals. A linear regression based on 

the copy number state of the individuals (deletion=1, normal=2, duplication=3) was 

performed on normalized brain measures corrected for plusICV: age, age squared, 
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sex, scanner site and ICV (except for ICV) or noICV:  age, age squared, sex, scanner 

site. Analysis was performed on : ALL – all individuals, ADULTS – adults (age ≥18), 

NON-AFFECTED - individuals without a known diagnosis of a brain disorder, NON-

AFFECTED ADULTS – adult individuals without a known diagnosis of a brain 

disorders, MATCHED CONTROLS - matching each carrier with one non-carrier 

based on age, sex and scanner site or matching each carrier with one non-carrier based 

on age, sex, scanner site and ICV, POPULATION STRUCTURE – checking effect of 

population structure on individuals. Only individuals with accessible ancestry 

information were included in the analysis. ENIGMA-CNV ONLY – ENIGMA-CNV 

dataset exclusively. UKB ONLY – UK biobank dataset only, INCLUDING 

RELATIVES– including relatives with more than third degree relationships. Results 

were considered statistically significant if they were below a Bonferroni-corrected P-

value of 0.0014. * = P < 0.0014, ** = P < 0.00014, ***=P<0.000014. 

 

Supplementary Table 6: Sensitivity analyses - T-tests on subcortical volumes 

between different 1q21.1 distal copy number groups in the main sample. The 

effect size (Cohen’s D) including 95 % confidence interval is presented. T-tests were 

performed on normalized values of brain measures plusICV: age, age squared, sex, 

scanner site and ICV (except for ICV) or noICV:  age, age squared, sex, scanner site. 

Analysis was performed on: ALL – all individuals, ADULTS – adults (age ≥18), 

CHILDREN – children (age<18 years), CHILDREN – children (age<18 years), 

NON-AFFECTED - individuals without a known diagnosis of a brain disorder, NON-

AFFECTED ADULTS – adult individuals without a known diagnosis of a brain 

disorders, MATCHED CONTROLS - matching each carrier with one non-carrier 

based on age, gender and scannersite or matching each carrier with one non-carrier 
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based on age, sex, scannersite and ICV, POPULATION STRUCTURE – checking 

effect of population structure on individuals. Only individuals with accessible 

ancestry information were included in the analysis, ENIGMA-CNV ONLY – 

ENIGMA-CNV dataset exclusively. UKB ONLY – UK biobank dataset only, 

INCLUDING RELATIVES– including relatives with more than third degree 

relationships. Results were considered statistically significant if they were below a 

Bonferroni-corrected P-value of 0.0014. * = P < 0.0014, ** = P < 0.00014, 

***=P<0.000014. 

 

Supplementary Table 7: Sensitivity analyses - 1q21.1 distal dosage effect on 

regional cortical surface area and mean cortical thickness. The effect size (β of 

the linear regression) is presented with 95 % confidence interval. A linear regression 

based on the copy number state of the individuals (deletion=1, normal=2, 

duplication=3) was performed on normalized brain measures corrected for plusICV: 

age, age squared, sex, scanner site and ICV (except for ICV) or noICV:  age, age 

squared, sex, scanner site. Analysis was performed on all individuals with measures 

available. Analysis was performed on: ALL – all individuals, ADULTS – adults (age 

≥18), NON-AFFECTED - individuals without a known diagnosis of a brain disorder, 

NON-AFFECTED ADULTS – adult individuals without a known diagnosis of a brain 

disorders, MATCHED CONTROLS - matching each carrier with one non-carrier 

based on age, gender and scanner site or matching each carrier with one non-carrier 

based on age, sex, scanner site and ICV, POPULATION STRUCTURE – checking 

effect of population structure on individuals. Only individuals with accessible 

ancestry information were included in the analysis NO RELATIVES– excluding 

relatives with more than third degree relationships. ENIGMA-CNV ONLY – 
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ENIGMA-CNV dataset exclusively. UKB ONLY – UK biobank dataset only, 

INCLUDING RELATIVES– including relatives with more than third degree 

relationships. Results were considered statistically significant if they were below a 

Bonferroni-corrected P-value of 0.0014. * = P < 0.0014, ** = P < 0.00014, 

***=P<0.000014. 

 

Supplementary Table 8: Sensitivity analyses: T-tests on regional cortical surface 

area and mean cortical thickness. The effect size (Cohen’s D) including 95 % 

confidence interval is presented. T-tests were performed on normalized values of 

brain measures plusICV: age, age squared, sex, scanner site and ICV (except for ICV) 

or noICV:  age, age squared, sex, scanner site. Analysis was performed on all 

individuals with measures available. Analysis was performed on: ALL – all 

individuals, ADULTS – adults (age ≥18), CHILDREN – children (age<18 years), 

CHILDREN – children (age<18 years), NON-AFFECTED - individuals without a 

known diagnosis of a brain disorder, NON-AFFECTED ADULTS – adult individuals 

without a known diagnosis of a brain disorders, MATCHED CONTROLS - matching 

each carrier with one non-carrier based on age, gender and scannersite or matching 

each carrier with one non-carrier based on age, sex, scannersite and ICV, 

POPULATION STRUCTURE – checking effect of population structure on 

individuals. Only individuals with accessible ancestry information were included in 

the analysis. ENIGMA-CNV ONLY – ENIGMA-CNV dataset exclusively. UKB 

ONLY – UK biobank dataset only, INCLUDING RELATIVES– including relatives 

with more than third degree relationships. Results were considered statistically 

significant if they were below a Bonferroni-corrected P-value of 0.0014. * = P < 

0.0014, ** = P < 0.00014, ***=P<0.000014. 
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Supplementary Table 9: Demographic details of ENIGMA-CNV and UK 

biobank separately. 

 

Supplementary Table 10: Extended information on 1q21.1 distal carriers. 

Established diagnosis (1 = yes, 0 = no), DiseaseType = known diagnosis or type of 

study. Chip = genotyping chip used for CNV calling. No of rels = number of known 

relatives in dataset. Relative = relative in dataset, relative removed = whether 

individual was removed from the analysis without relatives.   

 

Supplementary Table 11: Meta-analysis of dosage effect of 1q21.1 distal copy 

number on subcortical volumes. The effect size (β of the linear regression) is 

presented. A linear regression based on the copy number state of the individuals 

(deletion (del) =1, non-carrier (nc) =2, duplication (dup)=3) was performed on 

normalized brain measures correcting for age2, age, sex and scannersite (and ICV) ) in 

the ENIGMA-CNV and UK biobank (main sample) and the independent Icelandic 

cohorts. A final effect size estimate of the combined sample was obtained using a 

fixed effects meta-analysis framework (metafor). Results were considered statistically 

significant if they were below a Bonferroni-corrected P-value of 0.0014. * = P < 

0.0014, ** = P < 0.00014, ***=P < 0.000014, CI = confidence. Q = statistics for the 

test for heterogeneity, p(Q) = p-value for the test for heterogeneity, I2 =heterogeneity 

levels. 

 

Supplementary Table 12: Meta-analysis of t-tests on subcortical volumes 

between different 1q21.1 distal copy number groups. The effect size (Cohen’s D) 
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including 95 % confidence interval is presented. T-tests were performed on 

normalized values of brain measures correcting for age2, age, sex and scanner site 

(and ICV) in the ENIGMA-CNV and UK biobank (main sample) and the independent 

Icelandic cohorts. A final effect size estimate of the combined sample was obtained 

using a fixed effects meta-analysis framework (metafor). Results were considered 

statistically significant if they were below a Bonferroni-corrected P-value of 0.0014. * 

= P < 0.0014, ** = P < 0.00014, ***=P < 0.000014, CI = confidence. Q = statistics 

for the test for heterogeneity, p(Q) = p-value for the test for heterogeneity, I2 

=heterogeneity levels. 

 

Supplementary Table 13: Available sample sizes per task, per carrier group, for 

the analyses linking the neuroimaging measures to the cognitive measures. In the 

analyses, we included all 1q21.1 CNV carriers and non-carriers in the UK Biobank 

with data on the seven cognitive tasks and brain structures. 

 


